Use of extrusion technology in the development of high-voltage batteries of electric vehicles

Cover Page


Cite item

Full Text

Abstract

BACKGROUND: The automotive industry evolves constantly. Every day, engineers work to improve the vehicles’ design. In the modern world, it is necessary to take into account a huge number of aspects when creating various means of transport, including electric ones. Great attention is paid to the problem of reducing the mass of electric vehicles and electric motorcycles.

AIM: The introduction of extrusion technology in manufacturing of traction battery frames to reduce the mass-dimensional characteristics of the category L electric vehicles.

METHODS: The use of aluminum alloys in manufacturing of power structures of traction batteries through the extrusion technology.

RESULTS: Using the results of the load simulation in the ANSYS software, the further practical approval of using this technology for the category L electric vehicle is planned.

CONCLUSION: In addition to solving the problems associated with the mass–dimensional indicators, this technology is able to help to solve the economic problem and to approach to save technological time and money spent on the production of traction battery parts with a similar technological process (milling).

About the authors

Ivan P. Degtyarev

Central Scientific and Research Automobile and Automotive Engines Institute NAMI

Author for correspondence.
Email: ivan_degtyaryov@mail.ru
ORCID iD: 0000-0001-5378-6578
SPIN-code: 1595-2704

Chief Design Engineer of the Information and Intelligent Systems Center

Russian Federation, Moscow

Rinat Kh. Kurmaev

Central Scientific and Research Automobile and Automotive Engines Institute NAMI

Email: rinat.kurmaev@nami.ru
ORCID iD: 0000-0001-7064-0466
SPIN-code: 6483-2444

Associate Professor, Cand. Sci. (Engineering); Director of the Research and Education Center

Russian Federation, Moscow

References

  1. Agbalyan SG, Zakaryan AA, Eremyan PL, Oganesyan SA. Issledovanie protsessa goryachey ekstruzii armirovannykh vysokoprochnykh liteynykh alyuminievykh splavov i osobennosti formirovaniya ikh struktury i svoystv. Vestnik natsionalnogo politekhnicheskogo universiteta Armenii. Metallurgiya, materialovedenie, nedropolzovanie. 2018;32–43.
  2. Tretyakova VS, Shayakhmetov USh, Khaydarshin EA, Yumobaev YuS. Tekhnologiya ekstruzii trubchatykh izdeliy iz massy na osnove oksida alyuminiya. In: sovremennye tekhnologii kompozitsionnykh materialov. Materialy II nauchno-prakticheskoy molodezhnoy konferentsii s mezhdunarodnym uchastiem. Ufa: BashGU, 2016:272–274.
  3. Rusin NM, Kurbatova KA. Struktura i mekhanicheskie svoystva poroshkovykh briketov iz alyuminiya, podvergnutykh nakopitelnoy ekstruzii. Perspektivnye materialy. 2011;12:285–289.
  4. Galiev FF, Saykov IV, Berbentsev VD, et al. Poluchenie intermetallidov nikelya i alyuminiya pri ekstruzii reaktsionnykh poroshkovykh smesey. In: fizika kondensiro-vannogo sostoyaniya i ee prilozheniya. Sbornik trudov III Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Sterlitamak, 2020. Ufa: BashGU; 2020:389–391.
  5. Kolbasov A, Karpukhin K, Sheptunov D, et al. Analytical study of the power parameters of electric traction drive for modern vehicles. Lecture Notes in Networks and Systems. 2021;178:200–209.
  6. Kurmaev RKh, Terenchenko AS, Karpukhin KE, et al. Maintaining the required temperature of high-voltage batteries in electric cars and hybrid vehicles. Russian Engineering Research. 2015;35(9):666–669.
  7. Extrusion of aluminium [internet] Accessed: 10.02.2024. Available from: https://aluminium-guide.com/just-about-aluminum-extrusion/
  8. Types of extrusion for the production of plastic products [internet] Accessed: 10.02.2024. Available from: https://polymernagrev.ru/nagrev-v-proizvodstve/tipy-ekstruzii-dlya-izgotovleniya-plastikovykh-izdeliy/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The aluminum alloy extrusion.

Download (41KB)
3. Fig. 2. Cross-sections of the extruded profiles.

Download (376KB)
4. Fig. 3. Blank cutting of ingots of cylindrical rods.

Download (67KB)
5. Fig. 4. Heating of a blank before the extrusion of it.

Download (43KB)
6. Fig. 5. Mounting the matrices set.

Download (46KB)
7. Fig. 6. Setting up the blank in the container and profile pressing (extrusion).

Download (63KB)
8. Fig. 7. The milled plate made of the D16T aluminum alloy (σт = 345 MPa).

Download (26KB)
9. Fig. 8. The plate welded with the extruded profile made of the 6066 aluminum alloy (σт = 360 MPa).

Download (33KB)
10. Fig. 9. Stresses in the milled plate made of the D16T aluminum alloy.

Download (52KB)
11. Fig. 10. Stresses in the plate welded with the extruded profile made of the 6066 aluminum alloy.

Download (65KB)
12. Fig. 11. Use of a bushing in the extruded profile.

Download (38KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).