Heuristic Approaches to Constructing a Minimum Volume Ellipsoid around a Subset of Points
- Authors: Shcherbakov P.S.1,2,3, Kvinto Y.I.1
-
Affiliations:
- V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Moscow Institute of Physics and Technology
- Federal Research Center «Informatics and Control», Russian Academy of Sciences
- Issue: No 4 (2024)
- Pages: 112-122
- Section: Mathematical foundations of information technology
- URL: https://journals.rcsi.science/2071-8632/article/view/286480
- DOI: https://doi.org/10.14357/20718632240411
- EDN: https://elibrary.ru/JCIBCK
- ID: 286480
Cite item
Abstract
The paper deals with the following essentially combinatorial problem: Given N points in , compose the ellipsoid of minimum volume containing exactly N – k points where k is much less than N. Six algorithms for an approximate solution of this problem are proposed; they are based on certain heuristic considerations. Under various assumptions on the mechanism of generating the points and their amount, the comparative efficiency of the algorithms was conducted and the results of numerical experiments were presented.
About the authors
Pavel S. Shcherbakov
V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Federal Research Center «Informatics and Control», Russian Academy of Sciences
Author for correspondence.
Email: cavour118@mail.ru
главный научный сотрудник, доктор физико-математических наук; ведущий научный сотрудник; ведущий научный сотрудник
Russian Federation, Moscow; Dolgoprudny; MoscowYana I. Kvinto
V. A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
Email: yanakvinto@mail.ru
старший научный сотрудник, кандидат технических наук
Russian Federation, MoscowReferences
- Becker S., Bobin J., Candes E. NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. on Imaging Sciences. 2009;4(1):1–39.
- Burke E.K., Kendall G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. New York: Springer Science+Business Media, 2014.
- Donoho D.L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics. 2006;56(6):797–829.
- Ruan D., Chen G., Kerre E.E., Wets G. (eds.) Intelligent Data Mining: Techniques and Applications. Studies in Computational Intelligence. Vol. 5. New York: Springer, 2005.
- Ahipaşaoğlu S.D. Fast algorithms for the minimum volume estimator. Journal of Global Optimization. 2015;62(2):351–370.
- Boyd S., El Ghaoui L., Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
- Boyd S., Vandenberge L. Convex Optimization. Cambridge, MA: Cambridge University Press, 2004.
- Grant M., Boyd S. CVX: Matlab software for disciplined convex programming, ver. 2.2. Available from: http://stanford.edu/~boyd/cvx, 2020.
- Ahipaşaoğlu S.D., Sun P., Todd M.J. Linear convergence of a modified frank-wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods and Software. 2008;23:5–19.
- Sun P., Freund R.M. Computation of minimum-volume covering ellipsoids. Operations Research. 2004;52(5): 690–706.
- Agullo J. Exact iterative computation of the multivariate minimum volume ellipsoid estimator with a branch and bound algorithm. In: Pratt A. (ed.) Proceedings in Computational Statistics. Heidelberg; Physica-Verlag, 1996. p. 175–180.
- Bai E.-W., Chi H., Tempo R., Ye Y. Optimization with few violated constraints for linear bounded error parameter estimation. IEEE Trans. Autom. Control. 2002;47(7):1067–1077.
- Dabbene F., Shcherbakov P. Minimum volume ellipsoid comprising a subset of points. In: Proceedings of the 6th Int. Conf. Control, Decision Inform. Technologies (CoDiT 2019), Paris, Apr 23–26, 2019, paper WiP 20
- Gärtner B. Sampling with removal in LP-type problems. Journal of Computational Geometry. 2015;6(2):93–112.
- Tempo R., Calafiore G., Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems: With Applications. 2nd ed. Springer, 2013.
- Van Aelst S., Rousseeuw P. Minimum volume ellipsoid. WIREs Computational Statistics. 2009;1:71–82.
- Campi M.C., Garatti S. A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality. Journal of Optimization Theory and Applications.2011;148:257–280.
- Dabbene F., Henrion D., Lagoa C., Shcherbakov P. Randomized approximations of the image set of nonlinear discrete-time systems with applications to filtering. In: Proceedings of the 8th IFAC Symposium on Robust Control Design (ROCOND 2015), Bratislava, Slovak Republic, Jul 8–11, 2015.
- Raynaud H. Sur l’enveloppe convexe des nuages de points aleatoires dans IRn. I. Journal of Applied Probability. 1970;7(1):35–48.
- Hueter I. Limit theorems for the convex hull of random points in higher dimensions. Trans. Amer. Math. Soc. 1999;351(11):4337–4363.
- Jolliffe I.T. Principal Component Analysis. Springer Series in Statistics. New York: Springer, 2002.
- Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine. 1901;2:559–572.
- Lee J. Relationships between Properties of Pulp-Fibre and Paper. PhD Diss, University of Toronto, 1992.
Supplementary files
