Methods for Digital Twins Synthesis Based on Digital Identification Models of Production Processes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents an approach to the development of a new digital twin type. It offers to use closed-loop identifiers for generating point identification models based on associative knowledge. Procedures for calculating control actions in the conditions of possible abrupt changes of process operation modes are described.

About the authors

Natalia N. Bakhtadze

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Author for correspondence.
Email: sung7@yandex.ru

Doctor of Engineering Sciences, Professor, Principal Researcher

Russian Federation, Moscow

Artem E. Konkov

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: konkov@physics.msu.ru

Researcher

Russian Federation, Moscow

Denis V. Elpashev

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: den.elpshv@gmail.com

Researcher

Russian Federation, Moscow

Vladislav N. Kushnarev

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: grand_yarl@mail.ru

Engineer

Russian Federation, Moscow

Kirill S. Mukhtarov

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: kirill.muhtarov@mail.ru

Junior Researcher

Russian Federation, Moscow

Aleksey V. Purtov

KAMAZ

Email: aleksey.v.purtov@gmail.com

Department Director, Chief Designer of Digital Design Systems

Russian Federation, Naberezhnye Chelny

Valery E. Pyatetsky

National University of Science and Technology "MISIS"

Email: 7621496@gmail.com

Doctor of Engineering Sciences, Head of Department, Business Informatics and Production Control Systems

Russian Federation, Moscow

Aleksey A. Chereshko

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: chereshkoalex@gmail.com

Senior Researcher, Candidate of Engineering Sciences

Russian Federation, Moscow

References

  1. Forbes, M.G., Patwardhan, R.S., Hamadah, H., and Gopaluni, B.R. (2015). Model Predictive Control in Industry: Challenges and Opportunities. IFAC-PapersOnLine 48–8: 531 – 538.
  2. Digital twins in high-tech industry: monograph / edited by A. I. Borovkov. – St. Petersburg: Polytech-Press, 2022. – 492 p.
  3. Negri E., Fumagalli L., Macchi M. A Review of the Roles of Digital Twin in CPS based Production Systems // Procedia Manufacturing, 2017, vol. 11, pp. 939–948.
  4. V.M. Dozortsev. Digital twins in industry: genesis, structure, terminology, technologies, platforms, outlook. Part 1 – Origin and evolution of digital twins and how the presentday definitions reflect their matter and functionality // Automation in Industry. – 2020. № 9. pp. 3-11.
  5. V.M. Dozortsev. E.L. Itskovich, D.V. Kneller. Advanced process control (APC): 10 years in Russia // Automation in industry. 2013, no. 1, pp. 12-19.
  6. Heng A. et al. Rotating machinery prognostics: state of the art, challenges and opportunities // Mechanical Systems and Signal Processing (MSSP), 2009. Vol. 23. pp. 724-739.
  7. N. Bakhtadze, A. Chereshko, D. Elpashev, A. Suleykin, A. Purtov. Predictive associative models of processes and situations // IFACPapersOnLine, 2022. Vol. 55, No. 2, pp. 19–24. 14th IFAC Workshop on Intelligent Manufacturing Systems IMS 2022. Tel-Aviv, Israel, 28-30 March 2022.
  8. N. Bakhtadze, E. Sakrutina. Е.А. Information Identification Models in Variable Structure Control Systems // International Journal of Control Systems and Robotics. 2016. Vol.1. pp. 37-43.
  9. Wan Sieng Yeo, Agus Saptoro, Perumal Kumar, Manabu Kano. Just-in-time based soft sensors for process industries: A status report and recommendations // Journal of Process Control. Vol. 128, #8 2023, 103025. DOI https://doi.org/10.1016/j.jprocont.2023.103025
  10. Stark R. Innovations in digital modelling for next generation manufacturing system design / R. Stark, S. Kind, S. Neumeyer // CIRP Annals. – 2017. – Vol. 66. – pp. 169–172.
  11. I.D. Watson and F. Marir 1994 Case-based reasoning: A review The Knowledge Engineering Review vol. 9, num. 4, pp. 355-381.
  12. Ramon López De Mántaras, David Mcsherry, Derek Bridge, David Leake, Barry Smyth, Susan Craw, Boi Faltings, Mary Lou Maher, Michael T. Cox, Kenneth Forbus, Mark Keane, Agnar Aamodt and Ian Watson 2005. Retrieval, reuse, revision, and retention in casebased reasoning. The Knowledge Engineering Review Vol. 20:3, 215–240. doi: 10.1017/S0269888906000646
  13. Ali Louati, Sabeur Elkosantini, Saber Darmoul, Lamjed Ben Said 2016 A Case-Based Reasoning System to Control Traffic at Signalized Intersections. IFAC-PapersOnLine 49-5, pp. 149–154.
  14. Rodrigo G. C. Rocha, Ryan R. Azevedo, Ygor Cesar Sousa, Eduardo de A. Tavares, Silvio Meira 2014 A case-based reasoning system to support the global software development 18th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems KES2014. Procedia Computer Science 2014. №35. pp. 194 – 202.
  15. T. Olsson, P. Funk 2012. Case-based reasoning combined with statistics for diagnostics and prognosis 25th International Congress on Condition Monitoring and Diagnostic Engineering IOP Publishing. Journal of Physics: Conference Series 364 012061 doi: 10.1088/1742-6596/364/1/012061
  16. L.E. Mujica, J. Vehı, J. Rodellar, P. Kolakowski 2005 A hybrid approach of knowledge-based reasoning for structural assessment Institute of physics publishing smart materials and structures, 14, pp.1554–1562, doi: 10.1088/0964-1726/14/6/048.
  17. Y. Li, S.C.K. Shiu, S.K. Pal, J.N.K. Liu. 2006 A rough setbased case-based reasoner for text categorization International Journal of Approximate Reasoning, 41, pp. 229–255.
  18. Gómez-Vallejo H.J., Uriel-Latorre B., Sande-Meijide M., Villamarín-Bello B., Pavón R., Fdez-Riverola F., GlezPeña D. 2016 Case-based reasoning system for aiding detection and classification of nosocomial infections Decision Support Systems Vol. 84 pp. 104-116.
  19. Douali, N.a, De Roo, J.b, Jaulent, M.-C.a 2012 Clinical Diagnosis Support System based on Case Based Fuzzy Cognitive Maps and Semantic Web 24th Medical Informatics in Europe Conference, MIE 2012; Pisa; Italy; 26 August 2012 through 29 August 2012 Volume 180, 2012, pp. 295-299.
  20. López, B., Pous, C., Gay, P., Pla, A., Sanz, J., Brunet, J. 2011 EXiT CBR: A framework for case-based medical diagnosis development and experimentation Artificial Intelligence in Medicine Volume 51, Issue 2, pp. 81-91.
  21. Sreeparna Banerjee, Amrita Roy Chowdhury 2015 Case Based Reasoning in the Detection of Retinal Abnormalities using Decision Trees Procedia Computer Science 46, pp. 402 – 408.
  22. Mohamed M. Marzouk, Rasha M. Ahmed. 2011 A case-based reasoning approach for estimating the costs of pump station projects Journal of Advanced Research 2, pp. 289–295.
  23. Naderpajouh, N. and Afshar, A. 2008 A case-based reasoning approach to application of value engineering methodology in the construction industry Construction Management and Economics № 26(4). Pp. 363–372.
  24. Bakhtadze, N., Kulba, V., Lototsky, V., Maximov, E. Identification Methods Based on Associative Search Procedure. Control Cybernetics 2011, 2, 6–18.
  25. Bakhtadze N.; Suleykin A. Industrial digital ecosystems: Predictive models and architecture development issues. Annual Reviews in Control, 2020, pp. 56-64.
  26. Vapnik V. N. Estimation of Dependences Based on Empirical Data; Springer-Verlag: New York, US 1982. https://link.springer.com/book/10.1007/0-387-34239-7
  27. Bakhtadze, N.; Sakrutina, E.; Jarko, E. Predictive Associative Search Models in Variable Structure Control Systems. WSEAS Transactions on Mathematics 2016, 15, 407-419, https://wseas.com/journals/mathematics/2016/a765806093.pdf
  28. Bakhtadze, N.; Chereshko, A.; Elpashev, D.; Suleykin, A.; Purtov, A. Predictive associative models of processes and situations. IFAC-PapersOnLine, 2022, 55(2), 19-24, https://doi.org/10.1016/j.ifacol.2022.04.163
  29. Natalia Bakhtadze and Igor Yadikin. Analysis and Prediction of Electric Power System’s Stability Based on Virtual State Estimators. / Mathematics 2021, 9, 3194, https://doi.org/10.3390/math9243194
  30. N. Bakhtadze, A. Chereshko, D. Elpashev, I. Yadykin, R. Sabitov, G. Smirnova. Associative Model Predictive Control // IFAC-PapersOnLine · Volume 56, Issue 2, IFAC WC, Yokohama, 2023, Pages 7330-7334. Elsevier, https://doi.org/10.1016/j.ifacol.2023.10.346 https://www.ipu.ru/node/75816
  31. N. Bakhtadze and V. Lototsky. Knowledge-Based Models of Nonlinear Systems Based on Inductive Learning / New Frontiers in Information and Production Systems Modeling and Analysis: Incentive Mechanisms, Competence Management, Knowledge-based Production. Heidelberg, Germany: Springer, 2016. pp. 85-104.
  32. Moore, E. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society: New York, US ,1920; Volume 26, pp. 394–395.
  33. Penrose, R. A generalized inverse for matrices. Mathematical proceedings of the Cambridge Philosophical Society: Cambridge, Great Britain, 1955; 51, pp. 406–413.
  34. N. Bakhtadze and V. Lototsky. Associative Search and Wavelet Analysis Techniques in System Identification // IFAC-PapersOnLine. 2012. Vol. 16, No. 1. pp. 1227-1232, http://www.ifac-papersonline.net/Detailed/54839.html.
  35. Samotylova S.A., Torgashov A.Y. Developing a soft sensor for MTBE process based on a small sample // Automation and Remote Control. 2020. V. 81. No 11. P. 2132-2142.
  36. Bonett D.G., Wright T.A. Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations // Psychometrika. 2000. Vol. 65 (1). Р. 23–28.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).