BIG DATA Class Conservative-Type Clusterix-Like DBMSs
- Authors: Raikhlin V.A.1, Klassen R.K.1
-
Affiliations:
- Kazan National Research Technical University named after A. N. Tupolev
- Issue: No 3 (2024)
- Pages: 39-51
- Section: Information processing and data analysis
- URL: https://journals.rcsi.science/2071-8632/article/view/286114
- DOI: https://doi.org/10.14357/20718632240304
- EDN: https://elibrary.ru/DDMDGU
- ID: 286114
Cite item
Abstract
The reasonability of developing a conservative type DBMS with episodic data updating is determined by the features of OLAP-technologies. The issues of creating such DBMSs require serious discussion. In this review we systematize the main results of research of the research group of Clusterix KNITU-KAI on conservative DBMSs based on computational clusters. The purpose of the performed researches is actual: development of approaches to synthesize comparatively effective by the criterion “performance/cost” domestic Big Data class DBMSs. The comparison was made with the best foreign open systems. The developed DBMSs are available for use by organizations with limited financial resources. Due attention is paid to the elements of the theory of cluster DBMS of the conservative type. The basic configurations of Clusterix systems, the dynamics of such DBMSs, and the effects of their self-organization are considered. The research is based on the constructive system modeling methodology.
About the authors
Vadim A. Raikhlin
Kazan National Research Technical University named after A. N. Tupolev
Author for correspondence.
Email: varaikhlin@gmail.com
профессор кафедры компьютерных систем, доктор физ.-мат. наук, профессор
Russian Federation, KazanRoman K. Klassen
Kazan National Research Technical University named after A. N. Tupolev
Email: klassen.rk@gmail.com
доцент кафедры компьютерных систем, канд. техн. наук
Russian Federation, KazanReferences
- Barsegjan A.A., Kuprijanov M.S., Stepanenko V.V., Holod I.I. Data analysis technologies: Data Mining, Visual Mimning, Text Mining. OLAP. SPb. BHV-Peterburg. 2007; 2 ed. In Russ.
- Cohen J., Dolan B., Dunlap M., Hellerstein J. M. and Welton C. MAD Skills: New Analysis Practices for Big Data. Proceedings of the VLDB Endowment. 2009; 2 (2): 1481-1492.
- Raikhlin, V.A. Simulation of Distributed Database Machines. Programming and Computer Software. 1996; 22 (2): 68-74.
- Raikhlin V.A. Constructive modeling of systems. Kazan: Izd-vo «Fən» («Nauka»). 2005; In Russ.
- EMC Education Services. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. John Wiley & Sons. 2015;
- Xin, Reynold & Rosen, Josh & Zaharia, Matei & J. Franklin, Michael & Shenker, Scott & Stoica, Ion. Spark: SQL and Rich Analytics at Scale. Proceedings of the ACM SIGMOD International Conference on Management of Data. 2012; doi: 10.1145/2463676.2465288.
- Russian DBMS industry advances on "elephants". Connect. 2017; 5-6: 34-38. In Russ.
- Russian DBMS Postgres Pro. Postgres Professional. 2018; Available from: https://postgrespro.ru/products/postgrespro [Accessed 03.05.2018]. In Russ.
- Codd E.F. Providing OLAP to user-analysts an it mandate. Technical Report. 1993.
- Ullman, Jeffrey D. Principles of database systems. Galgotia publications. 1983.
- Raikhlin V.A., Vershinin I.S., Klassen R.K., Gibadullin R.F., Pystogov S.V. Constructive modeling of synthesis processes. Kazan: Izd-vo «Fən» («Nauka»). 2020; In Russ.
- V.V. Voevodin, V.V. Voevodin. Parallel Computing. SPb. BHV-Peterburg. 2004; In Russ.
- Abramov E.V. Parallel DBMS Clusterix. Prototype development and its field study. Vestnik KGTU im. A.N. Tupoleva. 2006; 2: 50-55. In Russ.
- Raikhlin V.A., Abramov E.V. Database Clusters. Modeling of evolution. Vestnik KGTU im. A.N. Tupoleva. 2006; 3: 22-27. In Russ.
- Raikhlin V.A., Abramov E.V., Shageev D.O. Evolutionary modeling of the process of choosing the architecture of database clusters. 8 Mezhdunarodnaia Konferentciia "Vysokoproizvoditelnye parallelnye vychisleniia naklasternykh sistemakh" HPC-2008. Kazan: Izd. KGTU. 2008: 249-256. In Russ.
- Raikhlin V.A., Shageev D.O. Information clusters as dissipative systems. Nelineinyi mir. 2009; 7 (5): 323-334. In Russ.
- Raikhlin V.A., Minyazev R.S. Multiclustering of distributed DBMS of conservative type. Nelineinyi mir. 2011; 8: 473-481. In Russ.
- Raikhlin V.A., Minyazev R.Sh. Analysis of processes in clusters of conservative databases from the position of self-organization. Vestnik KGTU im. A.N. Tupoleva. 2015; 2: 120-126. In Russ.
- Nicolis G., Prigogine I. Cognition of the complex. M.: URS. 2003; In Russ.
- Minyazev R.Sh., Popov A.V. Temporal dominants of database clusters. Trudy Respublikanskogo nauchnogo seminara AN RT «Metody modelirovaniia». Kazan: Izd-vo «Fən» («Nauka»). 2010; 4: 125-134. In Russ.
- Oracle. The MySQL Plugin API. MySQL Documentation. 2018; Available from: https://dev.mysql.com/doc/refman/5.7/en/plugin-api.html [Accessed: 09.04.2018]
- Hellerstein J.M., Stonebraker M., Hamilton J. Architecture of a Database System. Foundations and Trends in Databases. 2007; 1 (2): 141-259.
- Vadim A. Raikhlin, Roman K. Klassen. Clusterix-Like BigData DBMS. Data Science and Engineering. 2020; 5(1): 80–93. doi: 10.1007/s41019-020-00116-2
- Haken, Hermann. Synergetics: Introduction and Advanced Topics. Springer. 2004; doi: 10.1007/978-3-662-10184-1.
- Raikhlin V.A., Klassen R.K. Comparatively inexpensive hybrid technologies of conservative DBMS of large volumes. Informatcionnye tekhnologii i vychislitelnye sistemy. 2018; 68(1): 46-59. In Russ.
- Klassen R.K. Clusterix-N. 2019; Available from: https://bitbucket.org/rozh/clusterixn/ [Accessed: 09.03.2019]. In Russ.
- Klassen R.K. Increasing the efficiency of a parallel DBMS of conservative type on a cluster platform with multicore nodes. Vestnik KGTU im. A.N.Tupoleva. 2015; 1: 112-118. In Russ.
- Klassen R.K. Acceleration of hashing operations using graphics accelerators. Vestnik KGTU im. A.N.Tupoleva. 2018; 1: 134-141. In Russ.
- Klassen R.K. Features of effective processing of SQL queries to databases of conservative type. Informatcionnye tekhnologii i vychislitelnye sistemy. 2018; 68 (4): 108-118. In Russ.
- Klassen R.K. The program for regional load balancing to a conservative type database on the cluster platform «PerformSys». Certificate of state registration of the computer program No. 2017611785 of 09.02.2017. In Russ.
- Klassen R.K. PerformSys. 2018; Available from: https://github.com/rozh1/PerformSys/ [Accessed: 09.12.2018]. In Russ.
Supplementary files
