No 4 (2022)

Cover Page

Full Issue

Optimal and Rational Choice

Algorithm for Reduction of the Pareto Set Using a Collection of Fuzzy Information Quanta

Nogin V.D.

Abstract

The paper presents the multi-criteria choice problem with a numerical vector function on a subset of the vectors. It is assumed that the decision maker uses a fuzzy preference relation in the selection process. Information about the preference relation is considered to be known in the form of a finite collection of fuzzy quanta. We formulate an algorithm to reduce the Pareto set in the multicriteria choice problem using the set of quanta, and facilitate the final choice. A numerical example illustrates the algorithm work.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):3-12
pages 3-12 views

Pareto Set Reduction Based on Information about a Type-2 Fuzzy Preference Relation. Algorithm Justification

Baskov O.V.

Abstract

A multicriteria choice problem is considered when preferences of a decision maker are described using a type-2 fuzzy binary relation. A mathematical justification of the algorithm for Pareto set reduction based on fuzzy quanta of information about preferences of a decision maker is presented. Optimization issues are discussed for practically important cases.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):13-23
pages 13-23 views

Decision–Making in a Conflict Situation with Fuzzy Types of Participants

Chernov V.G.

Abstract

A method of solution of antagonistic game in violation of "common knowledge" principle is described, when players have incomplete knowledge about possible solutions and appropriate outcomes of the opposite side. As a formal model of a game situation it is proposed to use a fuzzy-multiple representation of estimates of possibilities of using by players their strategies and the corresponding consequences. The solution of this problem is based on the transformation of fuzzy estimates of the results of possible solutions for each situation in the form of an equivalent fuzzy set with a triangular identity function. The developed method does not impose restrictions on the affiliation functions of the initial fuzzy data. In addition to selecting the best solution, an estimation of its result and the degree of feasibility is obtained.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):24-35
pages 24-35 views

Pairwise Comparison of Mono-Interval Alternatives with Arbitrary Risk Distributions

Shepelev G.I.

Abstract

A method for comparing mono-interval alternatives is proposed, which makes it possible to compare in pairs the efficiency of alternatives with arbitrary risk distributions on interval estimates of their quality indicators. The application of the method is demonstrated by examples. Recommendations on the practical use of the method are given.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):36-43
pages 36-43 views

AI-enabled Systems

Formalization of Structural Synthesis of Technical Systems at the Initial Stage of Design

Zaboleeva-Zotova A.V., Petrovsky A.B.

Abstract

The paper considers the means for conceptual design of complex technical systems. We constructed a quasi-axiomatic theory that formalizes the procedures of generating meaning for a natural language description of the process of creating a new technical solution. Semantic categories, structures of universal sets, operations for comparing elements of the universe are introduced. The types of connection of elementary subsystems are described. We proposed a formalization of the procedure for multilevel synthesis of a technical system using a generative grammar over fuzzy structures. An example of designing a technical device is given.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):44-54
pages 44-54 views

The IACPaaS Platform for Developing Systems Based on Ontologies: a Decade of Use

Gribova V.V., Moskalenko P.M., Timchenko V.A., Shalfeeva E.A.

Abstract

The paper presents the IACPaaS cloud platform used for creating intelligent services based on ontologies, as well as the conceptual ideas and architecture underlying its development. The main features of the supported technologies for creating intelligent services of various types are described as well as the experience of their use. The platform offers an evolved instrumental support for the development of all components of intelligent services. First of all, it was positioned as an environment for creating cloud systems with knowledge bases, and now it can be considered as a tool for software development based on ontologies with semantic (graph) representation.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):55-65
pages 55-65 views

Machine Learning, Neural Networks

Internet Traffic Prediction Model

Frenkel S.L., Zakharov V.N.

Abstract

The main methods for predicting traffic in telecommunications networks are the methods and techniques of Machine Learning (ML). As a rule, within the framework of the MO approach, the network traffic predictor is considered as a tool that uses one way or other accumulated statistics over time to draw conclusions about the future behavior of network traffic [4]. However, as the analysis of the literature shows, many modern MO tools, primarily neural networks, do not work efficiently enough due to the pronounced non-linearity of traffic changes and non-stationarity. Among the tasks of forecasting, the task of predicting signs of increments (direction of change) of the process of time series is singled out separately. The article proposes to use some results of the theory of random processes for a quick assessment of the predictability of signs of increments with acceptable accuracy. The proposed fast prediction procedure is a simple heuristic rule for predicting the increment of two adjacent values of a random sequence. Knowledge of the laws of time series probability distributions is not required. The connection with this approach for time series with known approaches for predicting binary sequences is shown. The possibility of using the experience of predicting the absolute values of traffic when predicting the sign of the change is also considered.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):66-77
pages 66-77 views

Analysis of Textual and Graphical Information

Creation and Research of 3D Models for Digital Plant Phenotyping

Ivaschuk O.A., Berezhnoy V.A., Maslakov Y.N., Fedorov V.I.

Abstract

In the article, the authors present the results of the development and research of methods for creating 3D models of plants grown in vitro, which provide the ability to accurately record the morphometric indicators of the growth of individual parts, organs of plants and plants as a whole, cultivated on different nutrient media. The presented methods and algorithms in a complex solve the problems arising in the process of studying plants in a test tube, related to the complexity of the plant structure, the occurrence of distortions at the borders of the test tube, its possible fogging, as well as the influence of the human factor. A bank of 792 3D models for plants of 6 species has been created, which allows conducting simulation experiments to identify cause-and-effect relationships, forecasting and gaining new knowledge. The developed methods were checked for adequacy, an example of use for a specific plant was presented. The presented methods and algorithms can become the basis for the implementation of the process of digital phenotyping of plants.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):78-87
pages 78-87 views

Trend Detection Using NLP as a Mechanism of Decision Support

Lobanova P.A., Kuzminov I.F., Karatetskaya E.Y., Sabidaeva E.A., Anpilogov V.V.

Abstract

The purpose of the article is to present the principles of the developed algorithm for identifying trends based on the analysis of big text data and presenting the result in formats that are convenient for decision makers, implemented in the iFORA Big Data Mining System. The paper provides an overview of existing text analytics algorithms; outlines the mathematical basis for identifying terms that mean trends, which is proposed and tested on dozens of implemented projects; describes approaches to clustering terms based on their vectors in the Word2vec space; provides examples of two key visualizations (semantic, trend maps), which outline the range of topics and trends that characterize a particular area of study, as a way to adapt the results of the analysis to the tasks of decision makers. The limitations and advantages of using the proposed approach for decision support are discussed, and directions for future research are suggested.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):88-98
pages 88-98 views

Homonymy Resolution During Interpretation of Speech Commands by a Mobile Robot

Kotov A.A., Arinkin N.A., Zaidelman L.Y., Zinina A.A., Rovbo M.A., Sorokoumov P.S., Filatov A.A.

Abstract

Modern companion robots can solve a wide range of tasks while working together with a person. During the collaboration, a robot can receive commands from a person through various control systems, as well as use natural language. Utterances in natural language have significant degree of ambiguity (homonymy). In this paper we examine the methods, used to process utterances, and solve the possible homonymy during speech control of a robot in a natural or virtual environment.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):99-111
pages 99-111 views

Intelligent Planning and Control

Control of an Autonomous Unmanned Aerial Vehicle in an Unstable Air Environment While Searching for Forest Fires

Melekhin V.B., Khachumov M.V.

Abstract

The major problems associated with the rapid detection of forest fire and smoke are considered based on the use of autonomous unmanned aerial vehicles for flying over and surveying given areas. A method of searching for forest fires through a locally optimal flight route under conditions of uncertainty has been developed. We proposed original provisions of fuzzy sets, which allow an autonomous unmanned aerial vehicle to build an effective information-analytical model of situational-command control for moving along a route obtained in real time. A model of knowledge representation and processing have been developed that allow, on its basis, to automatically synthesize

 

 

logical-transformational rules for situational-command motion control of the aircraft's motion. It is shown that the proposed principle of building an information-analytical model makes it possible to reduce the complexity of selecting effective commands by significantly reducing the number of comparisons of the current situation with reference situations in the process of deriving solutions.

ARTIFICIAL INTELLIGENCE AND DECISION MAKING. 2022;(4):112-124
pages 112-124 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».