Higher-order polynomial approximation
- Авторлар: Dikusar N.D.1
-
Мекемелер:
- Laboratory of Information Technologies
- Шығарылым: Том 8, № 2 (2016)
- Беттер: 183-200
- Бөлім: Article
- URL: https://journals.rcsi.science/2070-0482/article/view/200798
- DOI: https://doi.org/10.1134/S2070048216020058
- ID: 200798
Дәйексөз келтіру
Аннотация
A new approach to polynomial higher-order approximation (smoothing) based on the basic elements method (BEM) is proposed. A BEM polynomial of degree n is defined by four basic elements specified on a three-point grid: x0 + α < x0 < x0 + β, αβ <0. Formulas for the calculation of coefficients of the polynomial model of order 12 were derived. These formulas depend on the interval length, continuous parameters α and β, and the values of f(m)(x0+ν), ν = α, β, 0, m = 0,3. The application of higher-degree BEM polynomials in piecewise-polynomial approximation and smoothing improves the stability and accuracy of calculations when the grid step is increased and reduces the computational complexity of the algorithms.
Авторлар туралы
N. Dikusar
Laboratory of Information Technologies
Хат алмасуға жауапты Автор.
Email: dnd@jinr.ru
Ресей, Dubna, 141980
Қосымша файлдар
