Higher-order polynomial approximation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new approach to polynomial higher-order approximation (smoothing) based on the basic elements method (BEM) is proposed. A BEM polynomial of degree n is defined by four basic elements specified on a three-point grid: x0 + α < x0 < x0 + β, αβ <0. Formulas for the calculation of coefficients of the polynomial model of order 12 were derived. These formulas depend on the interval length, continuous parameters α and β, and the values of f(m)(x0+ν), ν = α, β, 0, m = 0,3. The application of higher-degree BEM polynomials in piecewise-polynomial approximation and smoothing improves the stability and accuracy of calculations when the grid step is increased and reduces the computational complexity of the algorithms.

作者简介

N. Dikusar

Laboratory of Information Technologies

编辑信件的主要联系方式.
Email: dnd@jinr.ru
俄罗斯联邦, Dubna, 141980

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016