🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On numerical methods for functions depending on a very large number of variables


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The question under discussion is why optimal algorithms on classes of functions sometimes become useless in practice. As an example let us consider the class of functions which satisfy a general Lipschitz condition. The methods of integral evaluation over a unit cube of d dimensions, where d is significantly large, are discussed. It is assumed that the integrand is square integrable. A crude Monte Carlo estimation can be used. In this case the probable error of estimation is proportional to 1/√N, where N is the number of values of the integrand. If we use the quasi-Monte Carlo method instead of the Monte Carlo method, then the error does not depend on the dimension d, and according to numerous examples, it depends on the average dimension of the integrand. For small , the order of error is close to 1/N.

About the authors

M. Sobol

Keldysh Institute of Applied Mathematics

Author for correspondence.
Email: kuleshov@imamod.ru
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.