On numerical methods for functions depending on a very large number of variables


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The question under discussion is why optimal algorithms on classes of functions sometimes become useless in practice. As an example let us consider the class of functions which satisfy a general Lipschitz condition. The methods of integral evaluation over a unit cube of d dimensions, where d is significantly large, are discussed. It is assumed that the integrand is square integrable. A crude Monte Carlo estimation can be used. In this case the probable error of estimation is proportional to 1/√N, where N is the number of values of the integrand. If we use the quasi-Monte Carlo method instead of the Monte Carlo method, then the error does not depend on the dimension d, and according to numerous examples, it depends on the average dimension of the integrand. For small , the order of error is close to 1/N.

Sobre autores

M. Sobol

Keldysh Institute of Applied Mathematics

Autor responsável pela correspondência
Email: kuleshov@imamod.ru
Rússia, Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017