A local mean value theorem for functions on non-archimedean field extensions of the real numbers


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In this paper, we review the definition and properties of locally uniformly differentiable functions on N, a non-Archimedean field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. Then we define and study n-times locally uniform differentiable functions at a point or on a subset of N. In particular, we study the properties of twice locally uniformly differentiable functions and we formulate and prove a local mean value theorem for such functions.

Sobre autores

K. Shamseddine

Department of Physics and Astronomy

Autor responsável pela correspondência
Email: khodr.shamseddine@umanitoba.ca
Canadá, Manitoba, R3T 2N2

G. Bookatz

Department of Physics and Astronomy

Email: khodr.shamseddine@umanitoba.ca
Canadá, Manitoba, R3T 2N2

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016