A local mean value theorem for functions on non-archimedean field extensions of the real numbers


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we review the definition and properties of locally uniformly differentiable functions on N, a non-Archimedean field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. Then we define and study n-times locally uniform differentiable functions at a point or on a subset of N. In particular, we study the properties of twice locally uniformly differentiable functions and we formulate and prove a local mean value theorem for such functions.

作者简介

K. Shamseddine

Department of Physics and Astronomy

编辑信件的主要联系方式.
Email: khodr.shamseddine@umanitoba.ca
加拿大, Manitoba, R3T 2N2

G. Bookatz

Department of Physics and Astronomy

Email: khodr.shamseddine@umanitoba.ca
加拿大, Manitoba, R3T 2N2

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016