Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 8, № 2 (2016)

Research Articles

Invariant ultrametrics and Markov processes on the finite adèle ring of ℚ

Cruz-López M., Estala-Arias S.

Аннотация

This article introduces several rotation and additive invariant ultrametrics on the finite adèle ring Af of the rational numbers ℚ. Symmetry, regularity and uniqueness properties of these ultrametrics are provided. With these non-Archimedean metrics at hand it is possible to define a wide class of rotation and additive invariant Markov processes on Af.

p-Adic Numbers, Ultrametric Analysis and Applications. 2016;8(2):89-114
pages 89-114 views

The Corona problem on a complete ultrametric algebraically closed field

Escassut A.

Аннотация

Let IK be a complete ultrametric algebraically closed field and let A be the Banach IK-algebra of bounded analytic functions in the ”open” unit disk D of IK provided with the Gauss norm. Let Mult(A, ‖. ‖) be the set of continuous multiplicative semi-norms of A provided with the topology of simple convergence, let Multm(A, ‖. ‖) be the subset of the ϕMult(A, ‖. ‖) whose kernel is amaximal ideal and let Mult1(A, ‖. ‖) be the subset of the ϕMult(A, ‖. ‖) whose kernel is a maximal ideal of the form (x − a)A with aD. By analogy with the Archimedean context, one usually calls ultrametric Corona problem the question whether Mult1(A, ‖. ‖) is dense in Multm(A, ‖. ‖). In a previous paper, it was proved that when IK is spherically complete, the answer is yes. Here we generalize this result to any algebraically closed complete ultrametric field, which particularly applies to ℂp. On the other hand, we also show that the continuous multiplicative seminorms whose kernel are neither a maximal ideal nor the zero ideal, found by Jesus Araujo, also lie in the closure of Mult1(A, ‖. ‖), which suggest that Mult1(A, ‖. ‖)might be dense in Mult(A, ‖. ‖).

p-Adic Numbers, Ultrametric Analysis and Applications. 2016;8(2):115-124
pages 115-124 views

Non-archimedean transportation problems and Kantorovich ultra-norms

Megrelishvili M., Shlossberg M.

Аннотация

We study a non-archimedean (NA) version of transportation problems and introduce naturally arising ultra-norms which we call Kantorovich ultra-norms. For every ultra-metric space and every NA valued field (e.g., the field Qp of p-adic numbers) the naturally defined inf-max cost formula achieves its infimum. We also present NA versions of the Arens-Eells construction and of the integer value property. We introduce and study free NA locally convex spaces. In particular, we provide conditions under which these spaces are normable by Kantorovich ultra-norms and also conditions which yield NA versions of Tkachenko-Uspenskij theorem about free abelian topological groups.

p-Adic Numbers, Ultrametric Analysis and Applications. 2016;8(2):125-148
pages 125-148 views

Ergodic polynomials on subsets of p-adic integers

Memić N.

Аннотация

We establish results concerning ergodicity on compact subsets of Zp and study ergodicity of polynomials on subsets of Z2 and Z3.

p-Adic Numbers, Ultrametric Analysis and Applications. 2016;8(2):149-159
pages 149-159 views

A local mean value theorem for functions on non-archimedean field extensions of the real numbers

Shamseddine K., Bookatz G.

Аннотация

In this paper, we review the definition and properties of locally uniformly differentiable functions on N, a non-Archimedean field extension of the real numbers that is real closed and Cauchy complete in the topology induced by the order. Then we define and study n-times locally uniform differentiable functions at a point or on a subset of N. In particular, we study the properties of twice locally uniformly differentiable functions and we formulate and prove a local mean value theorem for such functions.

p-Adic Numbers, Ultrametric Analysis and Applications. 2016;8(2):160-175
pages 160-175 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».