A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field
- Autores: Bottazzi E.1
-
Afiliações:
- Aff1
- Edição: Volume 10, Nº 3 (2018)
- Páginas: 179-191
- Seção: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/201012
- DOI: https://doi.org/10.1134/S2070046618030032
- ID: 201012
Citar
Resumo
We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [a, b] ⊂ ℝ, f and its analytic continuation f̅∞ satisfy the same properties that can be expressed in the language of real closed ordered fields. If f is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.
Palavras-chave
Sobre autores
Emanuele Bottazzi
Aff1
Autor responsável pela correspondência
Email: emanuele.bottazzi@alumni.unitn.it
Itália, Via Roma 58, Bressana Bottarone, Pv, 27042
Arquivos suplementares
