A Transfer Principle for the Continuations of Real Functions to the Levi-Civita Field


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We discuss the properties of the continuations of real functions to the Levi-Civita field. In particular, we show that, whenever a function f is analytic on a compact interval [a, b] ⊂ ℝ, f and its analytic continuation satisfy the same properties that can be expressed in the language of real closed ordered fields. If f is not analytic, then this equivalence does not hold. These results suggest an analogy with the internal and external functions of nonstandard analysis: while the canonical continuations of analytic functions resemble internal functions, the continuations of non-analytic functions behave like external functions. Inspired by this analogy, we suggest some directions for further research.

作者简介

Emanuele Bottazzi

Aff1

编辑信件的主要联系方式.
Email: emanuele.bottazzi@alumni.unitn.it
意大利, Via Roma 58, Bressana Bottarone, Pv, 27042

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018