Density of characters of bounded p-adic analytic functions in the topological dual
- 作者: Escassut A.1
-
隶属关系:
- Laboratoire de Mathematiques Blaise Pascal, UMR-CNRS 6620
- 期: 卷 9, 编号 2 (2017)
- 页面: 138-143
- 栏目: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200772
- DOI: https://doi.org/10.1134/S2070046617020030
- ID: 200772
如何引用文章
详细
Let K be an ultrametric complete algebraically closed field, let D be a disk {x ∈ K ‖x| < R} (with R in the set of absolute values of K) and let A be the Banach algebra of bounded analytic functions in D. The vector space generated by the set of characters of A is dense in the topological dual of A if and only if K is not spherically complete. Let H(D) be the Banach algebra of analytic elements in D. The vector space generated by the set of characters of H(D) is never dense in the topological dual of H(D).
作者简介
Alain Escassut
Laboratoire de Mathematiques Blaise Pascal, UMR-CNRS 6620
编辑信件的主要联系方式.
Email: alain.escassut@math.univ-bpclermont.fr
法国, 24 Avenue des Landais, AUBIERE-CEDEX, 63178
补充文件
