Density of characters of bounded p-adic analytic functions in the topological dual
- Авторлар: Escassut A.1
-
Мекемелер:
- Laboratoire de Mathematiques Blaise Pascal, UMR-CNRS 6620
- Шығарылым: Том 9, № 2 (2017)
- Беттер: 138-143
- Бөлім: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200772
- DOI: https://doi.org/10.1134/S2070046617020030
- ID: 200772
Дәйексөз келтіру
Аннотация
Let K be an ultrametric complete algebraically closed field, let D be a disk {x ∈ K ‖x| < R} (with R in the set of absolute values of K) and let A be the Banach algebra of bounded analytic functions in D. The vector space generated by the set of characters of A is dense in the topological dual of A if and only if K is not spherically complete. Let H(D) be the Banach algebra of analytic elements in D. The vector space generated by the set of characters of H(D) is never dense in the topological dual of H(D).
Негізгі сөздер
Авторлар туралы
Alain Escassut
Laboratoire de Mathematiques Blaise Pascal, UMR-CNRS 6620
Хат алмасуға жауапты Автор.
Email: alain.escassut@math.univ-bpclermont.fr
Франция, 24 Avenue des Landais, AUBIERE-CEDEX, 63178
Қосымша файлдар
