Non-archimedean transportation problems and Kantorovich ultra-norms


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study a non-archimedean (NA) version of transportation problems and introduce naturally arising ultra-norms which we call Kantorovich ultra-norms. For every ultra-metric space and every NA valued field (e.g., the field Qp of p-adic numbers) the naturally defined inf-max cost formula achieves its infimum. We also present NA versions of the Arens-Eells construction and of the integer value property. We introduce and study free NA locally convex spaces. In particular, we provide conditions under which these spaces are normable by Kantorovich ultra-norms and also conditions which yield NA versions of Tkachenko-Uspenskij theorem about free abelian topological groups.

作者简介

M. Megrelishvili

Department of Mathematics

编辑信件的主要联系方式.
Email: megereli@math.biu.ac.il
以色列, Ramat-Gan, 52900

M. Shlossberg

Department of Mathematics

Email: megereli@math.biu.ac.il
以色列, Ramat-Gan, 52900

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016