Non-archimedean transportation problems and Kantorovich ultra-norms
- 作者: Megrelishvili M.1, Shlossberg M.1
-
隶属关系:
- Department of Mathematics
- 期: 卷 8, 编号 2 (2016)
- 页面: 125-148
- 栏目: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200606
- DOI: https://doi.org/10.1134/S2070046616020035
- ID: 200606
如何引用文章
详细
We study a non-archimedean (NA) version of transportation problems and introduce naturally arising ultra-norms which we call Kantorovich ultra-norms. For every ultra-metric space and every NA valued field (e.g., the field Qp of p-adic numbers) the naturally defined inf-max cost formula achieves its infimum. We also present NA versions of the Arens-Eells construction and of the integer value property. We introduce and study free NA locally convex spaces. In particular, we provide conditions under which these spaces are normable by Kantorovich ultra-norms and also conditions which yield NA versions of Tkachenko-Uspenskij theorem about free abelian topological groups.
作者简介
M. Megrelishvili
Department of Mathematics
编辑信件的主要联系方式.
Email: megereli@math.biu.ac.il
以色列, Ramat-Gan, 52900
M. Shlossberg
Department of Mathematics
Email: megereli@math.biu.ac.il
以色列, Ramat-Gan, 52900
补充文件
