p-Adic Dynamical Systems of the Function ax/x2 + a


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We show that any (1, 2)-rational function with a unique fixed point is topologically conjugate to a (2, 2)-rational function or to the function f(x) = ax/x2 + a. The case (2, 2) was studied in our previous paper, here we study the dynamical systems generated by the function f on the set of complex p-adic field ℂp. We show that the unique fixed point is indifferent and therefore the convergence of the trajectories is not the typical case for the dynamical systems. We construct the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set containing the set of limit points. It is given all possible invariant spheres.We show that the p-adic dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on the set of p-adic numbers p.Moreover some periodic orbits of the system are investigated.

Sobre autores

U. Rozikov

Institute of Mathematics

Autor responsável pela correspondência
Email: rozikovu@yandex.ru
Uzbequistão, 81, Mirzo Ulug’bek str.Tashkent, 100125

I. Sattarov

Institute of Mathematics

Email: rozikovu@yandex.ru
Uzbequistão, 81, Mirzo Ulug’bek str.Tashkent, 100125

S. Yam

California State University, Monterey Bay

Email: rozikovu@yandex.ru
Estados Unidos da América, 100 Campus Center, Seaside, California, 93955

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019