p-Adic Dynamical Systems of the Function ax/x2 + a
- Autores: Rozikov U.A.1, Sattarov I.A.1, Yam S.2
-
Afiliações:
- Institute of Mathematics
- California State University, Monterey Bay
- Edição: Volume 11, Nº 1 (2019)
- Páginas: 77-87
- Seção: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/201154
- DOI: https://doi.org/10.1134/S2070046619010059
- ID: 201154
Citar
Resumo
We show that any (1, 2)-rational function with a unique fixed point is topologically conjugate to a (2, 2)-rational function or to the function f(x) = ax/x2 + a. The case (2, 2) was studied in our previous paper, here we study the dynamical systems generated by the function f on the set of complex p-adic field ℂp. We show that the unique fixed point is indifferent and therefore the convergence of the trajectories is not the typical case for the dynamical systems. We construct the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set containing the set of limit points. It is given all possible invariant spheres.We show that the p-adic dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on the set of p-adic numbers ℚp.Moreover some periodic orbits of the system are investigated.
Palavras-chave
Sobre autores
U. Rozikov
Institute of Mathematics
Autor responsável pela correspondência
Email: rozikovu@yandex.ru
Uzbequistão, 81, Mirzo Ulug’bek str.Tashkent, 100125
I. Sattarov
Institute of Mathematics
Email: rozikovu@yandex.ru
Uzbequistão, 81, Mirzo Ulug’bek str.Tashkent, 100125
S. Yam
California State University, Monterey Bay
Email: rozikovu@yandex.ru
Estados Unidos da América, 100 Campus Center, Seaside, California, 93955
Arquivos suplementares
