p-Adic Dynamical Systems of the Function ax/x2 + a


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We show that any (1, 2)-rational function with a unique fixed point is topologically conjugate to a (2, 2)-rational function or to the function f(x) = ax/x2 + a. The case (2, 2) was studied in our previous paper, here we study the dynamical systems generated by the function f on the set of complex p-adic field ℂp. We show that the unique fixed point is indifferent and therefore the convergence of the trajectories is not the typical case for the dynamical systems. We construct the corresponding Siegel disk of these dynamical systems. We determine a sufficiently small set containing the set of limit points. It is given all possible invariant spheres.We show that the p-adic dynamical system reduced on each invariant sphere is not ergodic with respect to Haar measure on the set of p-adic numbers p.Moreover some periodic orbits of the system are investigated.

作者简介

U. Rozikov

Institute of Mathematics

编辑信件的主要联系方式.
Email: rozikovu@yandex.ru
乌兹别克斯坦, 81, Mirzo Ulug’bek str.Tashkent, 100125

I. Sattarov

Institute of Mathematics

Email: rozikovu@yandex.ru
乌兹别克斯坦, 81, Mirzo Ulug’bek str.Tashkent, 100125

S. Yam

California State University, Monterey Bay

Email: rozikovu@yandex.ru
美国, 100 Campus Center, Seaside, California, 93955

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019