Using anthropogenic raw materials in the process of synthesizing foam glass with heterogeneous microstructure
- Authors: Fedosov S.V.1, Bakanov M.O.2, Grushko I.S.3
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA of SFS of EMERCOM of Russia)
- M.I. Platov South-Russian State Polytechnic University (NPI) (SRSPU (NPI))
- Issue: Vol 19, No 2 (2024)
- Pages: 258-269
- Section: Hydraulics. Geotechnique. Hydrotechnical construction
- URL: https://journals.rcsi.science/1997-0935/article/view/254483
- ID: 254483
Cite item
Full Text
Abstract
About the authors
S. V. Fedosov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: fedosov-academic53@mail.ru
ORCID iD: 0000-0001-6117-7529
SPIN-code: 1840-8194
M. O. Bakanov
Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA of SFS of EMERCOM of Russia)
Email: mask-13@mail.ru
ORCID iD: 0000-0001-8460-9056
I. S. Grushko
M.I. Platov South-Russian State Polytechnic University (NPI) (SRSPU (NPI))
Email: grushkois@gmail.com
ORCID iD: 0000-0002-7552-1885
References
- Китайгородский И.И., Кешишян Т.Н. Пеностекло. М. : Промстройиздат, 1953. 80 с.
- Демидович Б.К. Производство и применение пеностекла. Минск : Наука и техника, 1972. 301 с.
- Manevich V.E., Subbotin K.Yu. Foam glass and problems of energy conservation // Glass and Ceramics. 2008. Vol. 65. Issue 3–4. Pp. 105–108. doi: 10.1007/s10717-008-9026-1
- Кетов A.A., Конев A.B., Пузанов И.С., Саулин Д.В. Тенденции развития технологии пеностекла // Строительные материалы. 2007. № 9. С. 28–31. EDN IBEQAZ.
- Минько Н.И., Пучка О.В. Основные направления развития технологии производства и применения пеностекла // Строительные материалы. 2007. № 5. С. 97–100. EDN HZZITZ.
- Spiridonov Y.A., Orlova L.A. Problems of foam glass production // Glass and Ceramics. 2003. Vol. 60. Issue 9/10. Pp. 313–314. doi: 10.1023/B:GLAC.0000008234.79970.2c
- Кетов A.A. Нанотехнологии при производстве пеностеклянных материалов нового поколения // Нанотехнологии в строительстве: научный интернет-журнал. 2009. Т. 1. № 3. С. 15–23. EDN KYVQAD.
- Дамдинова Д.Р., Хардаев П.К., Карпов Б.А., Зонхиев М.М. Технологические подходы к получению пеностекол с регулируемой поровой структурой // Строительные материалы. 2007. № 3. С. 68–70. EDN HZITJV.
- Шелковникова Т.И., Баранов Е.В. Исследование влияния теплотехнических факторов на процесс формирования структуры пеностекла // Огнеупоры и техническая керамика. 2006. № 10. С. 21–24. EDN NUXDCN.
- Kaz’mina O.V., Vereshchagin V.I., Abiyaka A.N., Mukhortova A.V., Popletneva Yu.V. Temperature regimes for obtaining granular material for foamed crystal glass materials as a function of the batch composition // Glass and Ceramics. 2009. Vol. 66. Issue 5–6. Pp. 179–182. doi: 10.1007/s10717-009-9160-4
- Kaz’mina O.V., Vereshchagin V.I., Abiyaka A.N. Assessment of the compositions and components for obtaining foam-glass-crystalline materials from aluminosilicate initial materials // Glass and Ceramics. 2009. Vol. 66. Issue 3–4. Pp. 82–85. doi: 10.1007/s10717-009-9133-7
- Shutov A.I., Yashurkaeva L.I., Alekseev S.V., Yashurkaev T.V. Study of the structure of foam glass with different characteristics // Glass and Ceramics. 2007. Vol. 64. Issue 9–10. Pp. 297–299. doi: 10.1007/s10717-007-0074-8
- Федосов С.В., Баканов М.О. Совершенствование технологии получения пеностекла на основе методов сетевого моделирования // Вестник МГСУ. 2022. Т. 17. № 11. С. 1551–1563. doi: 10.22227/1997-0935.2022.11.1551-1563. EDN LSLSDF.
- Федосов С.В., Баканов М.О. Пеностекло: особенности производства, моделирование процессов теплопереноса и газообразования // Academia. Архитектура и строительство. 2015. № 1. С. 108–113. EDN TLLYXB.
- Sha B., Xiong H., Zheng H., Yuan K., Wen M., Zhang Y. Analysis of the temperature field and deformation characteristics of foam glass thermal insulating decorative integrated board system // Case Studies in Thermal Engineering. 2022. Vol. 38. P. 102299. doi: 10.1016/j.csite.2022.102299
- Méar F.O., Podor R., Lautru J., Genty S., Lebullenger R. Effect of the process atmosphere on glass foam synthesis: A high-temperature environmental scanning electron microscopy (HT-ESEM) study // Ceramics International. 2021. Vol. 47. Issue 18. Pp. 26042–26049. doi: 10.1016/j.ceramint.2021.06.010
- König J., Petersen R.R., Iversen N., Yue Y. Application of foaming agent–oxidizing agent couples to foamed-glass formation // Journal of Non-Crystalline Solids. 2021. Vol. 553. P. 120469. doi: 10.1016/j.jnoncrysol.2020.120469
- Song H., Chai C., Zhao Z., Wei L., Wu H., Cheng F. Experimental study on foam glass prepared by hydrothermal hot pressing-calcination technique using waste glass and fly ash // Ceramics International. 2021. Vol. 47. Issue 20. Pp. 28603–28613. doi: 10.1016/j.ceramint.2021.07.019
- König J., Lopez-Gil A., Cimavilla-Roman P., Rodriguez-Perez M.A., Petersen R.R., Østergaard M.B. et al. Synthesis and properties of open- and closed-porous foamed glass with a low density // Construction and Building Materials. 2020. Vol. 247. P. 118574. doi: 10.1016/j.conbuildmat.2020.118574
- König J., Nemanič V., Žumer M., Petersen R.R., Østergaard M.B., Yue Y. et al. Evaluation of the contributions to the effective thermal conductivity of an open-porous-type foamed glass // Construction and Building Materials. 2019. Vol. 214. Pp. 337–343. doi: 10.1016/j.conbuildmat.2019.04.109
- Couto da Silva R., Neves Puglieri F., Maria de Genaro Chiroli D., Antonio Bartmeyer G., Toniolo Kubaski E., Mazurek Tebcherani S. Recycling of glass waste into foam glass boards: A comparison of cradle-to-gate life cycles of boards with different foaming agents // Science of the Total Environment. 2021. Vol. 771. P. 145276. doi: 10.1016/j.scitotenv.2021.145276
- Li J., Zhuang X., Monfort E., Querol X., Llaudis A.S., Font O. et al. Utilization of coal fly ash from a Chinese power plant for manufacturing highly insulating foam glass: Implications of physical, mechanical properties and environmental features // Construction and Building Materials. 2018. Vol. 175. Pp. 64–76. doi: 10.1016/j.conbuildmat.2018.04.158
- König J., Petersen R.R., Iversen N., Yue Y. Suppressing the effect of cullet composition on the formation and properties of foamed glass // Ceramics International. 2018. Vol. 44. Issue 10. Pp. 11143–11150. doi: 10.1016/j.ceramint.2018.03.130
- Østergaard M.B., Cai B., Petersen R.R., König J., Lee P.D., Yue Y. Impact of pore structure on the thermal conductivity of glass foams // Materials Letters. 2019. Vol. 250. Pp. 72–74. doi: 10.1016/j.matlet.2019.04.106
- Østergaard M.B., Petersen R.R., König J., Bockowski M., Yue Y. Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering // Journal of Non-Crystalline Solids: X. 2019. Vol. 1. P. 100014. doi: 10.1016/j.nocx.2019.100014
- Østergaard M.B., Zhang M., Shen X., Peter-sen R.R., König J., Lee P.D. et al. High-speed synchrotron X-ray imaging of glass foaming and thermal conductivity simulation // Acta Materialia. 2020. Vol. 189. Pp. 85–92. doi: 10.1016/j.actamat.2020.02.060
- Ewais E.M.M., Attia M.A.A., El-Amir A.A.M., Elshenway A.M.H., Fend T. Optimal conditions and significant factors for fabrication of soda lime glass foam from industrial waste using nano AlN // Journal of Alloys and Compounds. 2018. Vol. 747. Pp. 408–415. doi: 10.1016/j.jallcom.2018.03.039
- Fang X., Li Q., Yang T., Li Z., Zhu Y. Preparation and characterization of glass foams for artificial floating island from waste glass and Li2CO3 // Construction and Building Materials. 2017. Vol. 134. Pp. 358–363. doi: 10.1016/j.conbuildmat.2016.12.048
- Petersen R.R., König J., Iversen N., Østergaard M.B., Yue Y. The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glass // Ceramics International. 2021. Vol. 47. Issue 2. Pp. 2839–2847. doi: 10.1016/j.ceramint.2020.09.138
- Souza M.T., Maia B.G.O., Teixeira L.B., de Oliveira K.G., Teixeira A.H.B., Novaes de Oliveira A.P. Glass foams produced from glass bottles and eggshell wastes // Process Safety and Environmental Protection. 2017. Vol. 111. Pp. 60–64. doi: 10.1016/j.psep.2017.06.011
- Taurino R., Lancellotti I., Barbieri L., Leonelli C. Glass-ceramic foams from borosilicate glass waste // International Journal of Applied Glass Science. 2014. Vol. 5. Issue 2. Pp. 136–145. doi: 10.1111/ijag.12069
- Грушко И.С. Влияние технологических добавок на структуру пеностекла // Строительные материалы. 2022. № 4. С. 44–49. doi: 10.31659/0585-430X-2022-801-4-44-48. EDN MDHJFU.
Supplementary files
