Современная теория и практика технологии бетонов для 3D-печати в строительстве
- Авторы: Иноземцев А.С.1
-
Учреждения:
- Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
- Выпуск: Том 19, № 2 (2024)
- Страницы: 216-245
- Раздел: Строительное материаловедение
- URL: https://journals.rcsi.science/1997-0935/article/view/254481
- ID: 254481
Цитировать
Полный текст
Аннотация
Об авторах
А. С. Иноземцев
Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
Email: InozemcevAS@mgsu.ru
ORCID iD: 0000-0001-7807-688X
SPIN-код: 2444-1204
Список литературы
- Научная электронная библиотека eLibrary.ru. URL: https://www.elibrary.ru
- Scopus. URL: https://www.scopus.com
- Buswell R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research // Cement and Concrete Research. 2018. Vol. 112. Pp. 37–49. doi: 10.1016/j.cemconres.2018.05.006
- Raphael B., Senthilnathan S., Patel A., Bhat S. A review of concrete 3D printed structural members // Frontiers in Built Environment. 2023. Vol. 8. doi: 10.3389/fbuil.2022.1034020
- Paul S.C., Zijl G.P.A.G., Tan M.J., Gibson I. A review of 3D concrete printing systems and materials properties: current status and future research prospects // Rapid Prototyping Journal. 2018. Vol. 24. Issue 4. Pp. 784–798. doi: 10.1108/RPJ-09-2016-0154
- Cao X., Yu S., Cui H., Li Z. 3D printing devices and reinforcing techniques for extruded cement-based materials : a review // Buildings. 2022. Vol. 12. Issue 4. P. 453. doi: 10.3390/buildings12040453
- Ватин Н.И., Чумадова Л.И., Гончаров И.С., Зыкова В.В., Карпеня А.Н., Ким А.А. и др. 3D-печать в строительстве // Строительство уникальных зданий и сооружений. 2017. № 1 (52). С. 27–46. doi: 10.18720/CUBS.52.3. EDN YNESHX.
- Иноземцев А.С., Королев Е.В., Зыонг Т.К. Анализ существующих технологических решений 3D-печати в строительстве // Вестник МГСУ. 2018. Т. 13. № 7 (118). С. 863–876. doi: 10.22227/1997-0935.2018.7.863-876
- Славчева Г.С. Строительная 3D-печать сегодня: потенциал, проблемы и перспективы практической реализации // Строительные материалы. 2021. № 5. С. 28–36. doi: 10.31659/0585-430X-2021-791-5-28-36. EDN WACJMY.
- Мухаметрахимов Р.Х., Зиганшина Л.В. Технология и контроль качества строительной 3D-печати // Известия Казанского государственного архитектурно-строительного университета. 2022. № 1 (59). С. 64–79. doi: 10.52409/20731523_2022_1_64. EDN BZJGUO.
- Gosselin C., Duballet R., Roux P., Gaudilliere N., Dirrenberger J., Morel P. Large-scale 3D printing of ultra-high performance concrete — A new processing route for architects and builders // Material & Design. 2016. Vol. 100. Pp. 102–109. doi: 10.1016/j.matdes.2016.03.097
- Panda B., Paul S.C., Hui L.J., Tay Y.W.D., Tan M.J. Additive manufacturing of geopolymer for sustainable built environment // Journal of Cleaner Production. 2017. Vol. 167. Pp. 281–288. doi: 10.1016/j.jclepro.2017.08.165
- Anton A., Reiter L., Wangler T., Frangez V., Flatt R.J., Dillenburger B. A 3D concrete printing prefabrication platform for bespoke columns // Automation in Construction. 2020. Vol. 122. P. 103467. doi: 10.1016/j.autcon.2020.103467
- Weng Y., Li M., Ruan S., Wong T.N., Tan M.J., Yeong K.L.O. et al. Comparative economic, environmental and productivity assessment of a concrete bathroom unit fabricated through 3D printing and a precast approach // Journal of Cleaner Production. 2020. Vol. 261. P. 121245. doi: 10.1016/j.jclepro.2020.121245
- Reiter L., Wangler T., Anton A., Flatt R.J. Setting on demand for digital concrete — Principles, measurements, chemistry, validation // Cement and Concrete Research. 2020. Vol. 132. P. 106047. doi: 10.1016/j.cemconres.2020.106047
- Reiter L., Wangler T., Roussel N., Flatt R.J. The role of early age structural build-up in digital fabrication with concrete // Cement and Concrete Research. 2018. Vol. 112. Pp. 86–95. doi: 10.1016/j.cemconres.2018.05.011
- Ashrafi N., Duarte J.P., Nazarian S., Meisel N.A. Evaluating the relationship between deposition and layer quality in large-scale additive manufacturing of concrete // Virtual and Physical Prototyping. 2018. Vol. 14. Issue 2. Pp. 135–140. doi: 10.1080/17452759.2018.1532800
- Vantyghem G., De Corte W., Shakour E., Amir O. 3D printing of a post-tensioned concrete girder designed by topology optimization // Automation in Construction. 2020. Vol. 112. P. 103084. doi: 10.1016/j.autcon.2020.103084
- Furet B., Poullain P., Garnier S. 3D printing for construction based on a complex wall of polymer-foam and concrete // Additive Manufacturing. 2019. Vol. 28. Pp. 58–64. doi: 10.1016/j.addma.2019.04.002
- Weng Y., Lu B., Li M., Liu Z., Tan M.-J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing // Construction and Building Materials. 2018. Vol. 189. Pp. 676–685. doi: 10.1016/j.conbuildmat.2018.09.039
- Lim J.H., Weng Y., Pham Q.-C. 3D printing of curved concrete surfaces using Adaptable Membrane Formwork // Construction and Building Materials. 2020. Vol. 232. P. 117075. doi: 10.1016/j.conbuildmat.2019.117075
- Mechtcherine V., Bos F.P., Perrot A., da Silva W.R.L., Nerella V.N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials — Production steps, processes, and their underlying physics : a review // Cement and Concrete Research. 2020. Vol. 132. P. 106037. doi: 10.1016/j.cemconres.2020.106037
- Craveiro F., Nazarian S., Bartolo H., Bartolo P.J., Duarte J.P. An automated system for 3D printing functionally graded concrete-based materials // Additive Manufacturing. 2020. Vol. 33. P. 101146. doi: 10.1016/j.addma.2020.101146
- Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete // Materials and Structures. 2012. Vol. 45. Issue 8. Pp. 1221–1232. doi: 10.1617/s11527-012-9828-z
- D-Shape — steriolithography 3D printing technology. URL: https://www. www.d-shape.com
- Wolfs R.J.M. 3D printing of concrete structures : MSc thesis. Department of Built Environment, Eindhoven University of Technology, 2015. 110 p.
- Pierre A., Lanos Ch., Estelle P. Extension of spread-slump formulae for yield stress evaluation // Applied Rheology. 2013. Vol. 23. Issue 6. P. 63849. doi: 10.3933/applrheol-23-63849
- Perrot D., Rangeard A.J.M., Pierre A. Structural built-up of cement-based materials used for 3D printing extrusion techniques // Materials and Structures. 2016. Vol. 49. Issue 4. Pp. 1213–1220. doi: 10.1617/s11527-015-0571-0
- Anell L.H. Concrete 3D printer : MSc thesis. Civil Engineering, Lund Univercity, Wseden, 2015. 77 p.
- Nerella V.N., Mechtcherine V. Studying the printability of fresh concrete for formwork-free concrete onsite 3D printing technology (CONPrint3D) // 3D Concrete Printing Technology. 2019. Pp. 333–347. doi: 10.1016/b978-0-12-815481-6.00016-6
- Arunothayan A.R., Nematollahi B., Ranade R., Bong S.H., Sanjayan J. Development of 3D printable ultra-high performance fiber-reinforced concrete for digital construction // Construction and Building Materials. 2020. Vol. 257. P. 119546. doi: 10.1016/j.conbuildmat.2020.119546
- Ding T., Xiao J., Zou S., Wang Y. Hardened properties of layered 3D printed concrete with recycled sand // Cement and Concrete Composites. 2020. Vol. 113. P. 103724. doi: 10.1016/j.cemconcomp.2020.103724
- Hambach M., Volkmer D. Properties of 3D printed fiber-reinforced portland cement paste // Cement and Concrete Composites. 2017. Vol. 79. Pp. 62–70. doi: 10.1016/j.cemconcomp.2017.02.001
- Grassi G., Spagnolo S.L., Paoletti I. Fabrication and durability testing of a 3D printed facade for desert climates // Additive Manufacturing. 2019. Vol. 28. Pp. 439–444. doi: 10.1016/j.addma.2019.05.023
- Strano M., Rane K., Herve G., Tosi A. Determination of process induced dimensional variations of ceramic parts, 3D printed by extrusion of a powder-binder feedstock // Procedia Manufacturing. 2019. Vol. 34. Pp. 560–565. doi: 10.1016/j.promfg.2019.06.220
- Villacis N., Gualavisi M., Narvaez-Munoz C., Carrion L., Loza-Matovelle D., Naranjo F. Additive manufacturing of a theological characterized cement-based composite material // Proceedings of the 2017 European Conference on Electrical Engineering and Computer Science (EECS). Bern, Switzerland, 2017. Pp. 326–331.
- Perrot A., Jacquet Y., Rangeard D., Courteille E., Sonebi M. Nailing of layers: a promising way to reinforce concrete 3D printing structures // Materials. 2020. Vol. 13. P. 1518. doi: 10.3390/ma13071518
- Asprone D., Auricchio F., Menna C., Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach // Construction and Building Materials. 2018. Vol. 165. Pp. 218–231. doi: 10.1016/j.conbuildmat.2018.01.018
- Tho T.P., Thinh N.T. Using a cable-driven parallel robot with applications in 3D concrete printing // Applied Sciences. 2021. Vol. 11. Issue 2. P. 563. doi: 10.3390/app11020563
- Moeini M.A., Hosseinpoor M., Yahia A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing // Construction and Building Materials. 2020. Vol. 257. P. 119551. doi: 10.1016/j.conbuildmat.2020.119551
- Visser C.R. Mechanical and structural characterisation of extrusion moulded SHCC : MSc thesis. Stellenbosch : Stellenbosch University, 2007. 116 p.
- Kwon H., Bukkapatnam S., Khoshnevis B., Saito J.J.R.P.J. Effects of orifice shape in contour crafting of ceramic materials // Rapid Prototyping. 2002. Vol. 8. Issue 3. Pp. 147–160. doi: 10.1108/13552540210430988
- Malaeb Z., Hachem H., Tourbah A., Maalouf T., El Zarwi N., Hamzeh F. 3D concrete printing: machine and mix design // International Journal of Civil Engineering. 2015. Vol. 6. Issue 6. Pp. 14–22.
- Le T.T., Austin S.A., Lim S., Buswell R.A., Law R., Gibb A.G.F. et al. Hardened properties of high-performance printing concrete // Cement and Concrete Research. 2012. Vol. 42. Pp. 558–666. doi: 10.1016/j.cemconres.2011.12.003
- Lim S., Buswell R.A., Le T.T., Austin S.A., Gibb A.G.F. et al. Development in construction-scale additive manufacturing processes // Automation in Construction. 2012. Vol. 21. Issue 1. Pp. 262–268. doi: 10.1016/j.autcon.2011.06.010
- El Cheikh K., Remond S., Khalil N., Aouad G. Numerical and experimental studies of aggregate blocking in mortar extrusion // Construction and Building Materials. 2017. Vol. 145. Pp. 452–463. doi: 10.1016/j.conbuildmat.2017.04.032
- Olivas A., Helsel M.A., Martys N., Ferraris C., George W.L., Ferron R. Rheological measurement of suspensions without slippage: Experiment and model. National Institute of Standards and Technology, 2016. doi: 10.6028/NIST.TN.1946
- Soltan D.G., Li V.C. A self-reinforced cementitious composite for building-scale 3D printing // Cement and Concrete Composites. 2018. Vol. 90. Pp. 1–13. doi: 10.1016/j.cemconcomp.2018.03.017
- Vergara L.A., Colorado H.A. Additive manufacturing of Portland cement pastes with additions of kaolin, super plastificant and calcium carbonate // Construction and Building Materials. 2020. Vol. 248. P. 118669. doi: 10.1016/j.conbuildmat.2020.118669
- Panda B., Singh G.V.P.B., Unluer C., Tan M.-J. Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing // Journal of Cleaner Production. 2019. Vol. 220. Pp. 610–619. doi: 10.1016/j.jclepro.2019.02.185
- Alchaar A.S., Al-Tamimi A.K. Mechanical properties of 3D printed concrete in hot temperatures // Construction and Building Materials. 2020. Vol. 266. P. 120991. doi: 10.1016/j.conbuildmat.2020.120991
- Nair S.A.O., Panda S., Santhanam M., Sant G., Neithalath N. A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders // Cement and Concrete Composites. 2020. Vol. 112. P. 103671. doi: 10.1016/j.cemconcomp.2020.103671
- He L., Chow W.T., Li H. Effects of interlayer notch and shear stress on interlayer strength of 3D printed cement paste // Additive Manufacturing. 2020. Vol. 36. P. 101390. doi: 10.1016/j.addma.2020.101390
- Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J. Method of optimisation for ambient temperature cured sustainable geopolymers for 3D printing construction applications // Materials. 2019. Vol. 12. P. 902. doi: 10.3390/ma12060902
- Li Z., Wang L., Ma G. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions // Composites Part B: Engineering. 2020. Vol. 187. P. 107796. doi: 10.1016/j.compositesb.2020.107796
- Lin J.C., Wang J., Wu X., Yang W., Zhao R.X., Bao M. Effect of processing parameters on 3d printing of cement based materials // E3S Web of Conferences. 2018. Vol. 38. P. 03008. doi: 10.1051/e3sconf/20183803008
- Krishnaraja A.R., Guru K.V. 3D printing concrete : a review // IOP Conference Series: Materials Science and Engineering. 2021. Vol. 1055. P. 012033. doi: 10.1088/1757-899X/1055/1/012033
- Rehman A.U., Kim J.-H. 3D concrete printing: a systematic review of rheology, mix designs, mechanical, microstructural, and durability characteristics // Materials. 2021. Vol. 14. P. 3800. doi: 10.3390/ma14143800
- Marchon D., Kawashima S., Bessaies-Bey H., Mantellato S., Ng S. Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry // Cement and Concrete Research. 2018. Vol. 112. Pp. 96–110. doi: 10.1016/j.cemconres.2018.05.014
- Qian Y., De Schutter G. Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE) // Cement and Concrete Research. 2018. Vol. 111. Pp. 15–22. doi: 10.1016/j.cemconres.2018.06.013
- Lee H., Kim J.-H.J., Moon J.-H., Kim W.-W., Seo E.-A. Experimental analysis on rheological properties for control of concrete extrudability // Advances in Concrete Construction. 2020. Vol. 9. Pp. 93–102. doi: 10.12989/acc.2020.9.1.093
- Rahul A.V., Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates // Cement and Concrete Composites. 2020. Vol. 109. P. 103570. doi: 10.1016/j.cemconcomp.2020.103570
- Mechtcherine V., Nerella V.N., Will F., Nather M., Otto J., Krause M. Large-scale digital concrete construction — CONPrint3D concept for on-site, monolithic 3D printing // Automation in Construction. 2019. Vol. 107. P. 102933. doi: 10.1016/j.autcon.2019.102933
- Nerella V.N., Beigh M.A.B., Fataei S., Mechtcherine V. Strain-based approach for measuring structural build-up of cement pastes in the context of digital construction // Cement and Concrete Research. 2019. Vol. 115. Pp. 530–544. doi: 10.1016/j.cemconres.2018.08.003
- Bong S.H., Nematollahi B., Nazari A., Xia M., Sanjayan J.G. Fresh and hardened properties of 3D printable geopolymer cured in ambient temperature // In Proceedings of the RILEM International Conference on Concrete and Digital Fabrication, Zurich, Switzerland, 2018. Pp. 3–11.
- Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test // Composites Part B: Engineering. 2019. Vol. 174. P. 106968. doi: 10.1016/j.compositesb.2019.106968
- Zhang Y., Zhang Y., Liu G., Yang Y., Wu M., Pang B. Fresh properties of a novel 3D printing concrete ink // Construction and Building Materials. 2018. Vol. 174. Pp. 263–271. doi: 10.1016/j.conbuildmat.2018.04.115
- Kruger J., Zeranka S., van Zijl G. An ab initio approach for thixotropy characterisation of (nanoparticle-infused) 3D printable concrete // Construction and Building Materials. 2019. Vol. 224. Pp. 372–386. doi: 10.1016/j.conbuildmat.2019.07.078
- Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture // Construction and Building Materials. 2017. Vol. 145. Pp. 639–647.
- Jiao D., Shi C., Yuan Q., An X., Liu Y., Li H. Effect of constituents on rheological properties of fresh concrete : a review // Cement and Concrete Composites. 2017. Vol. 83. Pp. 146–159. doi: 10.1016/j.cemconcomp.2017.07.016
- Zhang Ch., Nerella V.N., Krishna A., Wang Sh., Zhang Y., Mechtcherine V. et al. Mix design concepts for 3D printable concrete : a review // Cement and Concrete Composites. 2021. Vol. 122. P. 104155. doi: 10.1016/j.cemconcomp.2021.104155
- Иноземцев А.С., Королев Е.В. Высоко-прочные легкие бетоны : монография. СПб. : Санкт-Петербургский государственный архитектурно-строительный университет, 2022. 192 с. EDN UCJRAZ.
- Inozemtcev A., Korolev E., Duong T.Q. Lightweight concrete for 3D printing with internal curing agent for Portland cement hydration // Magazine of Civil Engineering. 2022. No. 1 (109). P. 10915. doi: 10.34910/MCE.109.15. EDN EPQPUI.
- Королев Е.В., Зыонг Т.К., Иноземцев А.С. Способ обеспечения внутреннего ухода за гидра-тацией цемента в составах для 3D-печати // Вестник МГСУ. 2020. Т. 15. № 6. С. 834–846. doi: 10.22227/1997-0935.2020.6.834-846
- Inozemtcev A., Duong T.Q. Technical and economic efficiency of materials using 3D printing in construction on the example of high-strength lightweight fiber-reinforced concrete // E3S Web of Conferences. 2019. P. 02010. doi: 10.1051/e3sconf/20199702010
- Weng Y., Li M., Tan M.J., Qian S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model // Construction and Building Materials. 2018. Vol. 163. Pp. 600–610. doi: 10.1016/j.conbuildmat.2017.12.112
- Mahaut F., Mokeddem S., Chateau X., Roussel N., Ovarlez G. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials // Cement and Concrete Research. 2008. Vol. 38. Issue 11. Pp. 1276–1285. doi: 10.1016/j.cemconres.2008.06.001
- Toutou Z., Roussel N. Multi scale experimental study of concrete rheology: from water scale to gravel scale // Materials and Structures. 2006. Vol. 39. Issue 2. Pp. 189–199. doi: 10.1617/s11527-005-9047-y
- Noor M.A., Uomoto T. Rheology of high flowing mortar and concrete // Materials and Structures. 2004. Vol. 37. Issue 272. Pp. 513–521. doi: 10.1617/13965
- Wangler T., Lloret E., Reiter L., Hack N., Gramazio F., Kohler M. et al. Digital concrete: opportunities and challenges // RILEM Technical Letters. 2016. Vol. 1. Pp. 67–75. doi: 10.21809/rilemtechlett.2016.16
- Weng Y., Lu B., Li M., Liu Z., Tan M.J., Qian S. Empirical models to predict rheological properties of fiber reinforced cementitious composites for 3D printing // Construction and Building Materials. 2018. Vol. 189. Pp. 676–685. doi: 10.1016/j.conbuildmat.2018.09.039
- Chen M., Li L., Zheng Y., Zhao P., Lu L., Cheng X. Rheological and mechanical properties of admixtures modified 3D printing sulphoaluminate cementitious materials // Construction and Building Materials. 2018. Vol. 189. Pp. 601–611. doi: 10.1016/j.conbuildmat.2018.09.037
- Roussel N., Ovarlez G., Garrault S., Brumaud C. The origins of thixotropy of fresh cement pastes // Cement and Concrete Research. 2012. Vol. 42. Issue 1. Pp. 148–157. doi: 10.1016/j.cemconres.2011.09.004
- Ma G., Li Y., Wang L., Zhang J., Li Z. Real-time quantification of fresh and hardened mechanical property for 3D printing material by intellectualization with piezoelectric transducers // Construction and Building Materials. 2020. Vol. 241. P. 117982. doi: 10.1016/j.conbuildmat.2019.117982
- Wang L., Tian Z., Ma G., Zhang M. Interlayer bonding improvement of 3D printed concrete with polymer modified mortar: Experiments and molecular dynamics studies // Cement and Concrete Composites. 2020. Vol. 110. P. 103571. doi: 10.1016/j.cemconcomp.2020.103571
- Suiker A.S.J., Wolfs R.J.M., Lucas S.M., Salet T.A.M. Elastic buckling and plastic collapse during 3D concrete printing // Cement and Concrete Research. 2020. Vol. 135. P. 106016. doi: 10.1016/j.cemconres.2020.106016
- Wolfs R.J.M., Bos F.P., Salet T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing // Cement and Concrete Composites. 2019. Vol. 104. P. 103344. doi: 10.1016/j.cemconcomp.2019.103344
- Chen Y., Figueiredo S.C., Li Z., Chang Z., Jansen K., Copuroglu O. et al. Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture // Cement and Concrete Research. 2020. Vol. 132. P. 106040. doi: 10.1016/j.cemconres.2020.106040
- Vaitkevicius V., Serelis E., Kersevicius V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology // Construction and Building Materials. 2018. Vol. 169. Pp. 354–363. doi: 10.1016/j.conbuildmat.2018.03.007
- Xiao J., Zou S., Yu Y., Wang Y., Ding T., Zhu Y. et al. 3D recycled mortar printing: System development, process design, material properties and on-site printing // Journal of Building Engineering. 2020. Vol. 32. P. 101779. doi: 10.1016/j.jobe.2020.101779
- Perrot A., Rangeard D. 3D printing in concrete: techniques for extrusion/casting // 3D Printing of Concrete. 2019. Pp. 41–72.
- Баженов Ю.М. Модифицированные высоко-качественные бетоны. М. : Изд-во АСВ, 2006. 368 с. EDN QNMNZZ.
- Lu B., Weng Y., Li M., Qian Y., Leong K.F., Tan M.J. et al. A systematical review of 3D printable cementitious materials // Construction and Building Materials. 2019. Vol. 207. Pp. 477–490. doi: 10.1016/j.conbuildmat.2019.02.144
- Wangler T. Digital concrete: research and applications // Proceedings of the 10th International Concrete Congress. 2019. Vol. 35. Pp. 2–12.
- Al Rashid A., Khan S.A., Al-Ghamdi S.G., Koc M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment // Automation in Construction. 2020. Vol. 118. P. 103268. doi: 10.1016/j.autcon.2020.103268
- Roussel N. A thixotropy model for fresh fluid concretes: Theory, validation and applications // Cement and Concrete Research. 2006. Vol. 36. Pp. 1797–1806. doi: 10.1016/j.cemconres.2006.05.025
- Panda B., Unluer C., Tan M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing // Cement and Concrete Composites. 2018. Vol. 94. Pp. 307–314. doi: 10.1016/j.cemconcomp.2018.10.002
- Panda B., Tan M.J. Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing // Ceramics International. 2018. Vol. 44. Pp. 10258–10265. doi: 10.1016/j.ceramint.2018.03.031
- Rahul A.V., Santhanam M., Meena H., Ghani Z. 3D printable concrete: Mixture design and test methods // Cement and Concrete Composites. 2019. Vol. 97. Pp. 13–23. doi: 10.1016/j.cemconcomp.2018.12.014
- Nerella V., Nather M., Iqbal A., Butler M., Mechtcherine V.J.C. Inline quantification of extrudability of cementitious materials for digital construction // Cement and Concrete Composites. 2019. Vol. 95. Pp. 260–270. doi: 10.1016/j.cemconcomp.2018.09.015
- Panda B., Mohamed N., Ahamed N., Paul S.C., Bhagath Singh G., Tan M.J. et al. The effect of material fresh properties and process parameters on buildability and interlayer adhesion of 3D printed concrete // Materials. 2019. Vol. 12. P. 2149. doi: 10.3390/ma12132149
- Chen M., Yang L., Zheng Y., Huang Y., Li L., Zhao P. et al. Yield stress and thixotropy control of 3D printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up // Construction and Building Materials. 2020. Vol. 252. P. 119090. doi: 10.1016/j.conbuildmat.2020.119090
- Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G., Thorpe T.J.M. Mix design and fresh properties for high-performance printing concrete // Materials and Structures. 2012. Vol. 45. Pp. 1221–1232. doi: 10.1617/s11527-012-9828-z
- Zhang Y., Zhang Y., She W., Yang L., Liu G., Yang Y. Rheological and harden properties of the high-thixotropy 3D printing concrete // Construction and Building Materials. 2019. Vol. 201. Pp. 278–285. doi: 10.1016/j.conbuildmat.2018.12.061
- Keita E., Bessaies-Bey H., Zuo W., Belin P., Roussel N. Weak bond strength between successive layers in extrusion-based additive manufacturing: Measurement and physical origin // Cement and Concrete Research. 2019. Vol. 123. P. 105787. doi: 10.1016/j.cemconres.2019.105787
- Kruger J., Cho S., Zeranka S., Viljoen C., van Zijl G. 3D concrete printer parameter optimisation for high rate digital construction avoiding plastic collapse // Composites Part B: Engineering. 2020. Vol. 183. P. 107660. doi: 10.1016/j.compositesb.2019.107660
- Jolin M., Burns D., Bissonnette B., Gagnon F., Bolduc L.S. Understanding the pumability of concrete // Proceedings for the conference Shotcrete for Underground Support (XI). Davos, Switzerland. 2009.
- Mechtcherine V., Nerella V.N., Kasten K. Testing pumpability of concrete using Sliding Pipe Rheometer // Construction and Building Materials. 2014. Vol. 53. Pp. 312–323. doi: 10.1016/j.conbuildmat.2013.11.037
- Tay Y.W.D., Qian Y., Tan M.J. Printability region for 3D concrete printing using slump and slump flow test // Composites Part B: Engineering. 2019. Vol. 174. P. 106968. doi: 10.1016/j.compositesb.2019.106968
- Thrane L.N., Pade C., Nielsen C.V. Determination of rheology of self-consolidating concrete using the 4C-Rheometer and how to make use of the results // Journal of ASTM International. 2009. Vol. 7. Issue 1. Pp. 1–10. doi: 10.1520/JAI102003
- Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Evaluating the influence of aggregate content on pumpability of 3D printable concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 333–341.
- Mohan M.K., Rahul A.V., Van Tittelboom K., De Schutter G. Rheological and pumping behaviour of 3D printable cementitious materials with varying aggregate content // Cement and Concrete Research. 2021. Vol. 139. P. 106258. doi: 10.1016/j.cemconres.2020.106258
- Matthaus C., Back D., Weger D., Krankel T., Scheydt J., Gehlen C. Effect of cement type and limestone powder content on extrudability of lightweight concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 312–322.
- Zhou C., Chen R., Xu J., Ding L., Luo H., Fan J. et al. In-situ construction method for lunar habitation: Chinese Super Mason // Automation in Construction. 2019. Vol. 104. Pp. 66–79. doi: 10.1016/j.autcon.2019.03.024
- Burry J., Sabin J.E., Sheil B., Skavara M. Fabricate 2020. UCL Press: London, UK. 2020. 140 p.
- Jeong H., Han S.-J., Choi S.-H., Lee Y.J., Yi S.T., Kim K.S. Rheological property criteria for buildable 3D printing concrete // Materials. 2019. Vol. 12. P. 657. doi: 10.3390/ma12040657
- Panda B., Paul S.C., Mohamed N.A.N., Tay Y.W.D., Tan M.J. Measurement of tensile bond strength of 3D printed geopolymer mortar // Measurement. 2018. Vol. 113. Pp. 108–116. doi: 10.1016/j.measurement.2017.08.051
- Zareiyan B., Khoshnevis B. Interlayer adhesion and strength of structures in contour crafting — effects of aggregate size, extrusion rate, and layer thickness // Automation in Construction. 2017. Vol. 81. Pp. 112–121. doi: 10.1016/j.autcon.2017.06.013
- Katzer J., Szatkiewicz T. Properties of concrete elements with 3D printed formworks which substitute steel reinforcement // Construction and Building Materials. 2019. Vol. 210. Pp. 157–161. doi: 10.1016/j.conbuildmat.2019.03.204
- Salazar B., Aghdasi P., Williams I.D., Ostertag C.P., Taylor H.K. Polymer lattice-reinforcement for enhancing ductility of concrete // Materials & Design. 2020. Vol. 196. P. 109184. doi: 10.1016/j.matdes.2020.109184
- Sanjayan J.G., Nematollahi B., Xia M., Marchment T. Effect of surface moisture on interlayer strength of 3D printed concrete // Construction and Building Materials. 2018. Vol. 172. Pp. 468–475. doi: 10.1016/j.conbuildmat.2018.03.232
- Van Der Putten J., Deprez M., Cnudde V., De Schutter G., Van Tittelboom K. Microstructural characterization of 3D printed cementitious materials // Materials. 2019. Vol. 12. P. 2993. doi: 10.3390/ma12182993
- Van Der Putten J., De Schutter G., Van Tittelboom K. Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials // RILEM Technical Letters. 2019. Vol. 4. Pp. 33–38.
- Ma G., Li Z., Wang L., Wang F., Sanjayan J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing // Construction and Building Materials. 2019. Vol. 202. Pp. 770–783. doi: 10.1016/j.conbuildmat.2019.01.008
- Ogura H., Nerella V.N., Mechtcherine V. Developing and testing of strain-hardening cement-based composites (SHCC) in the context of 3D printing // Materials. 2018. Vol. 11. P. 1375. doi: 10.3390/ma11081375
- Farina I., Fabbrocino F., Carpentieri G., Modano M., Amendola A., Goodall R. et al. On the rein-forcement of cement mortars through 3D printed polymeric and metallic fibers // Composites Part B: Engineering. 2016. Vol. 90. Pp. 76–85. doi: 10.1016/j.compositesb.2015.12.006
- Rubio M., Sonebi M., Amziane S. Fresh and rheological properties of 3D printing bio-cement-based materials // Academic Journal of Civil Engineering. 2017. Vol. 35. Pp. 283–290.
- Bos F.P., Ahmed Z.Y., Wolfs R.J., Salet T.A. 3D printing concrete with reinforcement // High Tech Concrete: Where Technology and Engineering Meet. 2018. Pp. 2484–2493.
- Bos F.P., Ahmed Z.Y., Jutinov E.R., Salet T.A.M. Experimental exploration of metal cable as reinforcement in 3D printed concrete // Materials. 2017. Vol. 10. P. 1314. doi: 10.3390/ma10111314
- Mechtcherine V., Michael A., Liebscher M., Schmeier T. Extrusion-based additive manufacturing with carbon reinforced concrete: concept and feasibility study // Materials. 2020. Vol. 13. P. 2568. doi: 10.3390/ma13112568
- Bos F., Dezaire S., Ahmed Z., Hoekstra A., Salet T. Bond of reinforcement cable in 3D printed concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 584–600.
- Bester F., van den Heever M., Kruger J., Cho S., van Zijl G. Steel fiber links in 3D printed concrete // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 398–406.
- Geneidy O., Kumarji S., Dubor A., Sollazzo A. Simultaneous reinforcement of concrete while 3D printing // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 895–905.
- Marchment T., Sanjayan J. Penetration reinforcing method for 3D concrete printing // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 680–690.
- Marchment T., Sanjayan J. Mesh reinforcing method for 3D concrete printing // Automation in Construction. 2020. Vol. 109. P. 102992. doi: 10.1016/j.autcon.2019.102992
- Wang W., Konstantinidis N., Austin S.A., Buswell R.A., Cavalaro S., Cecinia D. Flexural behaviour of AR-glass textile reinforced 3D printed concrete beams // Proceedings of the Second RILEM International Conference on Concrete and Digital Fabrication. 2020. Pp. 728–737.
- Lin A., Tan Y.K., Wang C.-H., Kua H.W., Taylor H. Utilization of waste materials in a novel mortar–polymer laminar composite to be applied in construction 3D printing // Composite Structures. 2020. Vol. 253. P. 112764. doi: 10.1016/j.compstruct.2020.112764
- Mechtcherine V., Grafe J., Nerella V.N., Spaniol E., Hertel M., Fussel U. 3D printed steel reinforcement for digital concrete construction — Manufacture, mechanical properties and bond behavior // Construction and Building Materials. 2018. Vol. 179. Pp. 125–137. doi: 10.1016/j.conbuildmat.2018.05.202
- Regulation and permitting for 3D printed construction — automate construction. URL: https://automate.construction/2020/03/29/regulation-and-permitting-for-3d-printed-construction
- ICON — 3D Technology. ICON develops advanced construction technologies that advance humanity by using 3D printing robotics, software and advanced materials. URL: https://www.iconbuild.com
- Apis Cor. We print buildings. URL: https://apis-cor.com
- COBOD. COBOD is the world leader in 3D construction printing solutions. We are continuously adding wider automation and robotics to construction. URL: https://cobod.com
Дополнительные файлы
