On (Unit-)Regular Morphisms
- Авторлар: Quynh T.C.1,2, Abyzov A.3, Koşan M.T.4
-
Мекемелер:
- Department for Management of Science and Technology Development
- Faculty of Mathematics and Statistics
- Department of Algebra and Mathematical Logic
- Department of Mathematics, Faculty of Sciences
- Шығарылым: Том 40, № 12 (2019)
- Беттер: 2103-2110
- Бөлім: Article
- URL: https://journals.rcsi.science/1995-0802/article/view/206501
- DOI: https://doi.org/10.1134/S1995080219120114
- ID: 206501
Дәйексөз келтіру
Аннотация
We introduce a symmetry property for unit-regular rings as follows: a ∈ R is unit-regular if and only if aR ⊕ (a − u)R = R (equivalently, Ra ⊕ R(a − u) = R) for some unit u of R if and only if aR ⊕ (a − u)R =(2a − u)R (equivalently, Ra ⊕ R(a − u) = R(2a − u)) for some unit u of R. Let M and N be right R-modules and α, β ∈ Hom(M, N) such that α + β is regular. It is shown that αS ⊕ βS =(α + β)S, where S = End(M) if and only if Tα ⊕ Tβ = T(α + β), where T = End(N). We also introduce partial order α ≤⊕β and minus partial order α ≤−β for any α, β ∈ Hom(M, N); they translate into module-theoretic language defined in a ring in [7] and [8]. We analyze some relationships between ≤⊕ and ≤− on the endomorphism rings of the modules M and N.
Негізгі сөздер
Авторлар туралы
T. Quynh
Department for Management of Science and Technology Development; Faculty of Mathematics and Statistics
Хат алмасуға жауапты Автор.
Email: truongcongquynh@tdtu.edu.vn
Вьетнам, Ho Chi Minh City; Ho Chi Minh City
A. Abyzov
Department of Algebra and Mathematical Logic
Хат алмасуға жауапты Автор.
Email: Adel.Abyzov@kpfu.ru
Ресей, Kazan, 420008
M. Koşan
Department of Mathematics, Faculty of Sciences
Хат алмасуға жауапты Автор.
Email: mtamerkosan@gazi.edu.tr
Түркия, Ankara
Қосымша файлдар
