On (Unit-)Regular Morphisms


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We introduce a symmetry property for unit-regular rings as follows: aR is unit-regular if and only if aR ⊕ (au)R = R (equivalently, RaR(au) = R) for some unit u of R if and only if aR ⊕ (au)R =(2au)R (equivalently, RaR(au) = R(2au)) for some unit u of R. Let M and N be right R-modules and α, β ∈ Hom(M, N) such that α + β is regular. It is shown that αSβS =(α + β)S, where S = End(M) if and only if = T(α + β), where T = End(N). We also introduce partial order αβ and minus partial order αβ for any α, β ∈ Hom(M, N); they translate into module-theoretic language defined in a ring in [7] and [8]. We analyze some relationships between ≤ and ≤ on the endomorphism rings of the modules M and N.

Palavras-chave

Sobre autores

T. Quynh

Department for Management of Science and Technology Development; Faculty of Mathematics and Statistics

Autor responsável pela correspondência
Email: truongcongquynh@tdtu.edu.vn
Vietnã, Ho Chi Minh City; Ho Chi Minh City

A. Abyzov

Department of Algebra and Mathematical Logic

Autor responsável pela correspondência
Email: Adel.Abyzov@kpfu.ru
Rússia, Kazan, 420008

M. Koşan

Department of Mathematics, Faculty of Sciences

Autor responsável pela correspondência
Email: mtamerkosan@gazi.edu.tr
Turquia, Ankara

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019