Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.

Об авторах

S. Solov’ev

Institute of Computational Mathematics and Information Technologies

Автор, ответственный за переписку.
Email: sergei.solovyev@kpfu.ru
Россия, ul. Kremlevskaya 18, Kazan, 420008

P. Solov’ev

Institute of Computational Mathematics and Information Technologies

Email: sergei.solovyev@kpfu.ru
Россия, ul. Kremlevskaya 18, Kazan, 420008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).