Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.

Sobre autores

S. Solov’ev

Institute of Computational Mathematics and Information Technologies

Autor responsável pela correspondência
Email: sergei.solovyev@kpfu.ru
Rússia, ul. Kremlevskaya 18, Kazan, 420008

P. Solov’ev

Institute of Computational Mathematics and Information Technologies

Email: sergei.solovyev@kpfu.ru
Rússia, ul. Kremlevskaya 18, Kazan, 420008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018