Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.

Авторлар туралы

S. Solov’ev

Institute of Computational Mathematics and Information Technologies

Хат алмасуға жауапты Автор.
Email: sergei.solovyev@kpfu.ru
Ресей, ul. Kremlevskaya 18, Kazan, 420008

P. Solov’ev

Institute of Computational Mathematics and Information Technologies

Email: sergei.solovyev@kpfu.ru
Ресей, ul. Kremlevskaya 18, Kazan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018