Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radiofrequency discharge at reduced pressures. A necessary and sufficient condition for the existence of a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The original differential eigenvalue problem is approximated by the finite element method on a uniform grid. The convergence of approximate eigenvalue and approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for eigenvalue problems with linear dependence on the spectral parameter.

作者简介

S. Solov’ev

Institute of Computational Mathematics and Information Technologies

编辑信件的主要联系方式.
Email: sergei.solovyev@kpfu.ru
俄罗斯联邦, ul. Kremlevskaya 18, Kazan, 420008

P. Solov’ev

Institute of Computational Mathematics and Information Technologies

Email: sergei.solovyev@kpfu.ru
俄罗斯联邦, ul. Kremlevskaya 18, Kazan, 420008

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018