On complete convergence in mean for double sums of independent random elements in Banach spaces


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

For a double array of random elements {Tm,n, m ≥ 1, n ≥ 1} in a real separable Banach space X, we study the notion of Tm,n converging completely to 0 in mean of order p where p is a positive constant. This notion is stronger than (i) Tm,n converging completely to 0 and (ii) Tm,n converging to 0 in mean of order p as max{m, n} →∞. When X is of Rademacher type p (1 ≤ p ≤ 2), for a double array of independent mean 0 random elements {Vm,n, m ≥ 1, n ≥ 1} in X and a double array of constants {bm,n, m ≥ 1, n ≥ 1}, conditions are provided under which max1≤k≤m,1≤l≤n||Ʃi=1kƩj=1lVi,j||/bm,n converges completely to 0 in mean of order p. Moreover, these conditions are shown to provide an exact characterization of Rademacher type p (1 ≤ p ≤ 2) Banach spaces. Illustrative examples are provided.

Авторлар туралы

R. Parker

Department of Statistics

Email: rosalsky@stat.ufl.edu
АҚШ, Gainesville, FL, 32611-8545

A. Rosalsky

Department of Statistics

Хат алмасуға жауапты Автор.
Email: rosalsky@stat.ufl.edu
АҚШ, Gainesville, FL, 32611-8545

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017