On complete convergence in mean for double sums of independent random elements in Banach spaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For a double array of random elements {Tm,n, m ≥ 1, n ≥ 1} in a real separable Banach space X, we study the notion of Tm,n converging completely to 0 in mean of order p where p is a positive constant. This notion is stronger than (i) Tm,n converging completely to 0 and (ii) Tm,n converging to 0 in mean of order p as max{m, n} →∞. When X is of Rademacher type p (1 ≤ p ≤ 2), for a double array of independent mean 0 random elements {Vm,n, m ≥ 1, n ≥ 1} in X and a double array of constants {bm,n, m ≥ 1, n ≥ 1}, conditions are provided under which max1≤k≤m,1≤l≤n||Ʃi=1kƩj=1lVi,j||/bm,n converges completely to 0 in mean of order p. Moreover, these conditions are shown to provide an exact characterization of Rademacher type p (1 ≤ p ≤ 2) Banach spaces. Illustrative examples are provided.

Об авторах

R. Parker

Department of Statistics

Email: rosalsky@stat.ufl.edu
США, Gainesville, FL, 32611-8545

A. Rosalsky

Department of Statistics

Автор, ответственный за переписку.
Email: rosalsky@stat.ufl.edu
США, Gainesville, FL, 32611-8545

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).