On the hierarchies for deterministic, nondeterministic and probabilistic ordered read-k-times branching programs
- Авторы: Khadiev K.1
- 
							Учреждения: 
							- Department of Theoretical Cybernetics, Institute of Computational Mathematics and Information Technologies
 
- Выпуск: Том 37, № 6 (2016)
- Страницы: 683-704
- Раздел: Article
- URL: https://journals.rcsi.science/1995-0802/article/view/198377
- DOI: https://doi.org/10.1134/S1995080216060159
- ID: 198377
Цитировать
Аннотация
The paper examines hierarchies for nondeterministic and deterministic ordered read-ktimes Branching programs. The currently known hierarchies for deterministic k-OBDD models of Branching programs for k = o(n1/2/log3/2n) are proved by B. Bollig, M. Sauerhoff, D. Sieling, and I. Wegener in 1998. Their lower bound technique was based on communication complexity approach. For nondeterministic k-OBDD it is known that, if k is constant then polynomial size k-OBDD computes same functions as polynomial size OBDD (The result of Brosenne, Homeister and Waack, 2006). In the same time currently known hierarchies for nondeterministic read ktimes Branching programs for \(k = o\left( {\sqrt {\log n} /\log \log n} \right)\) are proved by Okolnishnikova in 1997, and for probabilistic read k-times Branching programs for k ≤ log n/3 are proved by Hromkovic and Saurhoff in 2003.
We show that increasing k for polynomial size nodeterministic k-OBDD makes model more powerful if k is not constant. Moreover, we extend the hierarchy for probabilistic and nondeterministic k-OBDDs for k = o(n/log n). These results extends hierarchies for read k-times Branching programs, but k-OBDD has more regular structure. The lower bound techniques we propose are a “functional description” of Boolean function presented by nondeterministic k-OBDD and communication complexity technique. We present similar hierarchies for superpolynomial and subexponential width nondeterministic k-OBDDs.
Additionally we expand the hierarchies for deterministic k-OBDDs using our lower bounds for k = o(n/log n). We also analyze similar hierarchies for superpolynomial and subexponential width k-OBDDs.
Об авторах
K. Khadiev
Department of Theoretical Cybernetics, Institute of Computational Mathematics and Information Technologies
							Автор, ответственный за переписку.
							Email: kamilhadi@gmail.com
				                					                																			                												                	Россия, 							Kremlevskaya ul. 18, Kazan, Tatrstan, 420008						
Дополнительные файлы
 
				
			 
						 
					 
						 
						 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					