Volume 19, Nº 4 (2024)

Regional and Industrial Economics

Electrical capacity of products and its impact on regional economy

Belov V.

Resumo

Introduction. The legislative acts adopted by the country’s leadership determine the relevance of the research topic, while their execution brings forward certain difficulties. It is considered to be a challenge for the state to simultaneously promote the economic growth of the Russian regions, comply with the requirements for sustainable development of territories, and reduce the use of energy resources for production. Purpose. The purpose of the research is to determine the electrical capacity of products and its impact on the sustainable development of regional economies in order to adopt appropriate typological decisions by authorities. To do this, the growth rates of industrial production and electricity consumption were calculated. Materials and Methods. The study refers to 2017–2022 Rosstat data on industrial production, energy consumption, and gross regional product. The basic method is applied to calculate the growth rates, and the grouping method is used to analyze the findings. Results. The article considers a possible solution to a two-pronged problem when the authorities manage the growth rates of both industrial production and its electrical capacity. The findings reveal similar characteristics among the regions, which could categorize them intro groups. These groups show region-oriented electricity consumption, electrical intensity, and the developed structure of branches in regional economies, and could determine the impact of ongoing processes (indicators in questions) on the gross regional product. The proposed approach has both theoretical and practical significance: it facilitates the adoption of reference management decisions by regional authorities to manage the growth rates of independent variables. Conclusions. The study is relevant as it words the research problem, proposes the assessment methodology for the growth rate of electrical capacity of industrial products, determines its impact on the sectoral structure of gross value added (sections B, C, D, E), which constitutes the gross regional product.

Perm University Herald. Economy. 2024;19(4):361-376
pages 361-376 views

Investment openness of the Russian regions: Transformations over time and influence of the border location

Vasilieva A., Moroshkina M.

Resumo

Introduction. Today, Russia faces a number of challenges and restrictions that might affect foreign economic activity, including attracting foreign investments. However, this influence is not equal over various Russian territories. Purpose. The paper aims at assessing the investment openness of the Russian regions, identifying spatial trends in investment activities, and determining the impact of the border factor. Materials and Methods. Investment openness was defined with mathematical tools and statistical data from 2011, 2015, and 2021; hierarchical cluster analysis was used for typology; the results of calculations and typology were visualized in map diagrams. Results. The study identified groups of regions by their investment openness (outsiders, averagers and leaders); the parameter’s dynamic trends driven by the border factor were determined for the territories of Russia over the period of study. Conclusions. The border factor has no predominant decisive influence on investment openness of the economies in the Russian regions. However, some regions showed the dependence on the border factors, which could mainly be explained by their geopolitical situation. Considering the importance of investment attractiveness for economic and technological development, there is a need for its scientifically based monitoring. The methodological approach presented in the work can be used to assess the spatial and time changes in investment openness of the economies of the Russian regions, including with regard to the border factor.

Perm University Herald. Economy. 2024;19(4):377-394
pages 377-394 views

Artificial intelligence for optimized routine administrative tasks: Opportunities, challenges and prospects

Izmaylov M.

Resumo

Introduction. Artificial intelligence (AI) is a field of computer science aimed at creating systems to perform tasks that require intellectual abilities. Digital economy combined with AI creates new opportunities, including optimized administrative routine tasks executed by the heads of modern commercial organizations. This gives the relevance to the present research. Purpose. The purpose is to study trends in AI development for optimized routine administrative tasks, outline perspective areas for its further development. Methods. The study refers to general traditional scientific methods: deduction, analysis, systematization. Results. The author explores the trends in the development of artificial intelligence, reviews and describes the technologies and methods of its use in management. The use of AI technologies in the Russian enterprises is also looked at. Conclusions. The study reveals that the introduction of AI technologies to deal with administrative routine tasks provides an opportunity to simplify and accelerate the work of employees, and improve production efficiency. This causes many Russian companies to start using AI in their activities or further integrate it into the management process.

Perm University Herald. Economy. 2024;19(4):395-408
pages 395-408 views

Tax incentives as a stimulating mechanism for creative industries in regional economy

Karpova O., Turgel I.

Resumo

Introduction. The article refers to international practices and proposes tax incentives as a stimulating mechanism for creative industries in Russia. The development of creative industries is a crucial aspect of both economic and cultural growth. However, tax support measures in Russia remain underdeveloped and inconsistent across regions. Purpose. The paper refers to international practices to identify efficient tax support mechanisms for creative industries that can be adapted to the Russian environment. Materials and Methods. Tax incentives for creative industries in the countries with the developed creative economies, such as the United Kingdom, the USA, Ireland, and Kazakhstan, are examined and compared, and the content of the Russian legislation is analyzed. Results. It was revealed that Russia lacks a unified federal support system, which results in regional disparities in the development of creative industries. International practices show the efficiency of tax incentives such as VAT-free taxation system and tax credits, which have contributed to the growth of creative industries abroad. Conclusion. These disparities could be eliminated by introducing a unified system of tax incentives at the federal level and developing a customized tax policy for creative industries, which will support their sustainable development.

Perm University Herald. Economy. 2024;19(4):409-426
pages 409-426 views

Business digital maturity metrics in micro-, meso-, and macrocircuits

Nigay E.

Resumo

Introduction. Digital transformations permeate the organizations at all levels of management and interaction circuits. This trend has become an objective reality of modern business, with its importance and influence growing. The logic of the research is determined by a decomposition approach applied to assess the digital maturity of an enterprise. This approach is developed as follows: 1) internal microcircuit of interaction – business processes and internal environment – metrics of internal microcircuit (automation, tools, skills, information); 2) external mesocircuit – interaction with partners and customers – metrics of external mesocircuit (compatibility, platforms, integration, data); 3) external macrocircuit – adjustments in business models and processes to the environment – metrics of external macrocircuit (economy, politics, technology, competition). The proposed decomposition is universal and modifiable in terms of indicators and factors, depending on a specific research request. Purpose. The article is aimed at supporting a decomposition approach to measure the digital maturity of an organization with the metrics of digital development in micro-, meso-, and macrocircuits. Materials and Methods. The article refers to the methods of systematization and generalization of information, comparative analysis, logical and structural decomposition and modeling. Results. The proposed approach is derived from the structural decomposition of business digital maturity metrics in micro-, meso-, and macrocircuits. This approach measures digital maturity both separately in relation to each circuit and holistically, which gives a chance to develop a rational digital strategy when each circuit has its innovative changes proportionally. In addition, the author’s approach is complemented by the theory of the stage organizational evolution, which describes the maturation stages of an organization on the digital maturity scale and defines further fundamental adjustments of the digital strategy. Conclusions. Measuring the digital maturity of business determines the current state of an organization's performance in digitalization, as well as outlines promising directions for innovative development. The decomposition approach used to assess digital maturity provides an additional set of data that tracks similar dynamics of digital changes in each circuit of organizational interaction.

Perm University Herald. Economy. 2024;19(4):427-442
pages 427-442 views

Designing a business model strategy in the digital economy: directions and challenges

Pashchenko T.

Resumo

Introduction. The current development stage of society and economy is characterized by an extensive introduction of digital technologies. They change the production processes, give rise to new processes, and create new products. This both transforms and enhances business with new approaches to its structure and radically changes business models. Purpose. In this study, the author aims at proposing a sequence of actions for designing new business models and their introduction in the organization's activities. Materials and Methods. The author refers to a monographic method for theoretical grounds and a systematic integrated approach for developing proposals. The author analyzes the nature of actions to be performed to transform business processes with regard to their implementability in the context of digital technologies. Results. First, the author summarizes the possible transformation scenarios in different sectors of economics. This reveals typical features and elements of business models with digital technologies. Second, the author has established typical actions to design business models. This outlines a sequence of actions to develop a strategy of the business model’s digital transformation. Conclusions. The results are novel as the article proposes a general algorithm of actions for the business models’ design determined by the use of digital technologies. The author analyzed the approaches and found out that they are developed for some specific sectors of economy. The approach proposed by the author can be of interest to the Boards of Directors to develop a business transformation strategy, to the in-house auditors to assess growth opportunities, and the organizations’ top managers to justify the choice of further growth area for their business.

Perm University Herald. Economy. 2024;19(4):443-455
pages 443-455 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».