Simulation of Stainless Ferritic-Martensitic and Austenitic Steel Hardening After Irradiation in Ion Accelerator. Part 1. Development of a Methodology for Determining the Ion Mode Irradiation of Ferritic-Martensitic Steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A methodology for determining the irradiation mode for ferritic-martensitic steels at ion accelerator has been developed and experimentally substantiated, providing radiation hardening of these steels, identical to that realized under neutron irradiation. The change in Vickers microhardness is used as a measure of radiation hardening. A study was carried out of radiation-induced changes in the microhardness of ferritic-martensitic steels 07Kh12NMFB and EP-823 after neutron and ion irradiation to damaging doses of 10–30 dpa in the temperature range 350–600°C. These materials were irradiated with neutrons in the reactors BOR-60, BN-600 and in the ion accelerator of the State Scientific Center of the Russian Federation – Institute for Physics and Power Engineering named after A.I. Leypunsky (IPPE) with Fe3+, Fe4+ ions and He+ ions to concentrations of 0.2 and 4 appm/dpa. A transition function has been established that connects the irradiation temperatures for neutron and ion irradiation at a given damaging dose, ensuring the same radiation hardening.

About the authors

B. Z. Margolin

NRC “Kurchatov Institute” – CRISM “Prometey”

Author for correspondence.
Email: mail@crism.ru
Dr Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

A. A. Sorokin

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
Cand Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

L. A. Belyaeva

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
Cand Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

References

  1. Зеленский В. Ф., Неклюдов И. М., Черняева Т. П . Радиационные дефекты и распухание металлов. – Киев: Наук. думка, 1988.
  2. Was G. S . Fundamentals of Radiation Materials Science. – Berlin: Springer-Verlag, 2007.
  3. Accelerator simulation and theoretical modelling of radiation effects in structural materials // IAEA Nuclear Energy Series. – 2018. – N NF-T-2.2. – Vienna: IAEA.
  4. Was G. S. et al . High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation // Simulation of Neutron Damage for High Dose Exposure of Advanced Reactor Materials: Program IRP-RC. URL: https://ne-up.inl.gov/SiteAssets/FY%202013%20Abstracts/IRP/IRP-University%20of%20Michigan.pdf
  5. Was G. S., Jiao Z., Getto E., Sun K., Monterrosa A. M., Maloy S. A., Anderoglu O., Sencer B. H., Hackett M . Emulation of reactor irradiation damage using ion beams // Scr. Mater. – 2014. – V. 88. – P. 33–36.
  6. Zinkle S. J., Snead L. L . Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations // Scr. Mater. – 2018. – V. 143. – P. 154–160.
  7. Taller S., Coevering G. V., Wirth B. D., Was G. S . Predicting structural material degradation in advanced nuclear reactors with ion irradiation // Scientific Reports. – 2021. – N 11. – C. 2949.
  8. Рогожкин С. В., Никитин А. А., Хомич А. А. и др . Имитационные эксперименты на пучках тяжелых ионов для моделирования радиационных повреждений конструкционных материалов активной зоны ядерных и термоядерных энергетических установок // Ядерная физика и инжиниринг. – 2018. – T. 9, № 3. – С. 245–258.
  9. Грудзевич О. Т., Печенкин В. А., Кобец У. А. и др . Исследования радиационной стойкости конструкционных материалов на ускорителях ионов // ВАНТ, Серия: ядерно-реакторные константы. – 2022. – Вып. 3. – С. 127–145.
  10. ASTM E521-96: Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation, 2017.
  11. Taller S., Jiao Z., Field K., Was G. S . Emulation of Fast Reactor Irradiated T91 Using Duallon Beam Irradiation // J. Nucl. Mater. – 2019. – V. 527, N 151831. – P. 1–14.
  12. Phythian W. J., English C. A . Microstructural evolution in reactor pressure vessel steels // Journal of Nuclear Materials. – 1993. – N 205. – P. 162–177.
  13. Margolin B. Z., Shvetsova V. A., Gulenko A. G., Kostylev V. I . Prometey local approach to brittle fracture: development and application // Eng. Fracture Mech. – 2008. – V. 75. – P. 3483–3498.
  14. Margolin B. Z., Shvetsova V. A., Gulenko A. G . Radiation embrittlement modeling in multiscale approach to brittle fracture of RPV steel // Int. J. of Fracture. – 2013. – V. 179, Is. 1–2. – P. 87–108.
  15. Марголин Б. З., Юрченко Е. В., Морозов А. М., Пирогова Н. Е . Анализ эффекта флакса нейтронов применительно к радиационному охрупчиванию материалов корпусов реакторов ВВЭР // Вопросы материаловедения. – 2012. – № 2 (70). – С. 177–196.
  16. Amaev A. D., Gorynin I. V., Nikolaev V. A . Radiation Damage of Nuclear Power Plant Pressure Vessel Steels (Russian Materials Monograph Series, 2) // Am. Nucl. Soc. – 1997. – 282 p.
  17. Margolin B., Fomenko V., Shvetsova V., Yurchenko E . On the link of the embrittlement mechanisms and microcrack nucleation and propagation properties for RPV steels. Part II. Fracture properties and modelling // Eng. Fracture Mech. – 2022. – V. 270. – P. 108556.
  18. Lidbury D., Bugat S., Diard O., et al . PERFECT (prediction of irradiation damage effects on reactor components): progress with multiscale modelling in RPV mechanics sub-project / J. Besson, D. Moinerau, D. Steglich (Eds.) // Local approach to fracture. – Paris: Ecole des Mines de Paris; 2006. – P. 459–464.
  19. Eason E. D. , Odette G. R., Nanstad R. K., Yamamoto T . A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels. – ORNL/TM-2006/530, November 2007.
  20. Kirk M. Assessment of flux effect exhibited by IVAR database // Proc. of the IAEA Technical Meeting on Radiation embrittlement and Life Management of Reactor Pressure Vessels, Znojmo, Czech Republic, 18–22 October, 2010.
  21. Радиационная повреждаемость и работоспособность конструкционных материалов / А. Д. Амаев, А. М. Крюков, И. М. Неклюдов и др . / Под ред. А. М. Паршина и П. А. Платонова . – СПб.: Политехника, 1997. – 312 с. ил.
  22. Марголин Б.З., Юрченко Е.В., Морозов А.М., Варовин А.Я., Рогожкин С.В., Никитин А.А . Исследование влияния пострадиационного отжига на восстановление свойств материалов опорных конструкций корпусов реакторов ВВЭР-440. Ч. 2: Анализ особенностей влияния отжига материала после низкотемпературного облучения // Вопросы материаловедения. – 2022. – № 1 (109). – C. 184–198.
  23. GOST R 70431–2022. National standard of the Russian Federation. Materials of equipment and pipelines of nuclear power plants. Methods for determining the impact strength and critical temperature of brittleness based on the results of impact bending tests.
  24. ASTM E 1921-22a. Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range // Annual Book of ASTM Standards. – 2022. – V. 03.01.
  25. Margolin B. Z., Gulenko A. G., Nikolaev V. A., Ryadkov L. N . A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels // Int. J. Pres. Ves. & Piping. – 2003. – N 80. – P. 17–829.
  26. Margolin B. Z., Gulenko A. G., Fomenko V. N., Kostylev V. I . Further Improvement of the Prometey Model and Unified Curve Method. Part 2: Improvement of the Unified Curve Method // Eng. Fract. Mech. – 2018. – V. 191. – P. 383–402.
  27. Марголин Б. З., Юрченко Е. В., Морозов А. М . Пороговые и предельные значения концентраций примесных элементов в материале корпусов реакторов типа ВВЭР // Вопросы материаловедения. – 2013. – № 2 (86) . – С. 152–163.
  28. Busby J. T., Hash M. C., Was G. S . The relationship between hardness and yield stress in irradiated austenitic and ferritic steels // Journ. Nucl. Materials. – 2005. – N 336. – P. 267–278.
  29. Gorynin I. V., Nesterova E. V., Nikolaev V. A., Rybin V. V . Microstructure and Mechanical Properties of WWER-440 Reactor Vessel Metal After Service Life Expiration and Recovery Anneal // 17th International Symposium “Effects of Radiation on Materials”, ASTM STR 1270, American Society for Testing and Materials, 1996. – P. 248–259.
  30. Lucas G. E., Odette G. R., Maiti R., Sheckherd J.W . Tensile Properties of Irradiated Pressure Vessel Steels // Influence of Radiation on Material Properties: 13th International Symposium (Part 2). – ASTM STP 956, 1987. – P. 379–394.
  31. Higgy H. R., Hammad F. H. Effect of fast neutron irradiation on mechanical properties of stainless steels: AISI types 304, 316 and 347 // J. Nucl. Mater. – 1975. – V. 55, Is. 2. – P. 177–186.
  32. Hawthorne J. R . Radiation embrittlement // Embrittlement of Engineering Alloys / Briant C., Banerji S. (Eds.) – New York, 1983.
  33. Jones R., Williams T . The Dependence of Radiation Hardening and Embrittlement on Irradiation Temperature. – ASTM STP1270-EB. Paper ID: STP16495S.
  34. Марголин Б. З., Юрченко Е. В . Дозовые зависимости для материалов корпусов реакторов ВВЭР и их опорных конструкций // Вопросы материаловедения. – 2023. – № 2 (114) . – С. 166–194.
  35. Gaganidze E., Petersen C., Aktaa J . Study of helium embrittlement in boron doped EUROFER97 steels // J. Nucl. Mater. – 2009. – V. 386–388. – P. 349–352.
  36. Lysova G. V., Birzhevoy G. A . Kinetics of the radiation-induced hardening of EP-823 steel after Ni++ ion irradiation, annealing and re-irradiation // Journal of surface investigation, X-ray, synchrotron and neutron techniques. – 2012. – V. 6, N 2.
  37. Maloy J., Henry S. A . Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors. Chapter 9 // Structural Materials for Generation IV Nuclear Reactors. – 2017. – P. 329–355.
  38. Ivanov A. A., Shulepin S. V., Dvoryashin A. M., Konobeev Yu. V., Ivanov S. N., Alekseev Yu. V., Porollo S. I. Structure and mechanical properties of EP-823, 20Kh12MN steel and experimental versions of 12% chromium steels after neutron irradiation in the BN-350 reactor // Collection of reports of the IX Russian conference on reactor materials science, Dimitrovgrad, 2009. – P. 560–573.
  39. Grigorovich V. K . Hardness and microhardness of metals. – Moscow: Nauka, 1976.
  40. Golovin Yu. I . Nanoindentation and its possibilities. – Moscow: Mashinostroenie, 2009.
  41. Dolph C. K. et al. Plastic zone size for nanoindentation of irradiated Fe–9%Cr ODS // J. Nucl. Mat. – 2016. – V. 481. – P. 33–45.
  42. Xiao X., Long Yu . Nano-indentation of ion-irradiated nuclear structural materials: A review // Nucl. Mater. Energy. Elsevier. – 2020. – V. 22. – Art. 100721.
  43. ISO 14577-4. Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters – Part 4: Test Method for Metallic and Nonmetallic Coatings. ISO 14577-4, 2016 (E).
  44. Wilkinson A. J., Ben T. Britton . Strains, planes, and EBSD in materials science // Materials today. – 2012. – V. 15, Is. 9. – P. 366–376.
  45. Gusev M. N., De Bellefon G. M., Rosseel T. M . Analysis of Localized Deformation Processes in Highly Irradiated Austenitic Stainless Steel through In Situ Techniques // Report of Oak Ridge National Laboratory, Oak Ridge, TN (United States), 2019, ORNL/TM-2019/1274.
  46. Kryukov A. M., Debarberis L., Hähner P. et al . Thermal annealing as a method to predict results of high temperature irradiation embrittlement // J. Nucl. Mater. – 2013. – V. 432, – P. 501–504.
  47. ГОСТ Р 8.748–2011. Металлы и сплавы. Измерение твердости и других характеристик материалов при инструментальном индентировании, 2013. – 22 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).