Textural Index for Martensitic and Bainitic Steels to Assess Influence of Hot Rolling Mode on Parent Austenite Structure Before Quenching

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To assess a state of parent austenite before the steel quenching, a scalar textural index for martensite and bainite is introduced in terms of EBSD orientation data. Deformed and recrystallized states of the parent phase are discriminated by the sign of this index, whereas its magnitude in each of the two reflects the texture sharpness depending on the hot rolling mode. Accordingly, in a virtual case of randomly distributed orientations the considered parameter vanishes. Performance of the proposed approach is demonstrated on medium carbon martensitic steel hot rolled at laboratory conditions and on industrial rolled plates of low carbon bainitic steel.

About the authors

A. A. Zisman

NRC “Kurchatov Institute” – CRISM “Prometey”

Author for correspondence.
Email: mail@crism.ru
Dr Sc. (Phys-Math) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

K. Yu. Kurteva

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

N. S. Novoskoltsev

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
49 Shpalernaya St, 191015 St Petersburg, Russian Federation

S. N. Petrov

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
Dr. Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

E. I. Khlusova

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
Dr. Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

E. A. Yakovleva

NRC “Kurchatov Institute” – CRISM “Prometey”

Email: mail@crism.ru
Cand Sc. (Eng) 49 Shpalernaya St, 191015 St Petersburg, Russian Federation

References

  1. Bernier N., Bracke L., Malet L., Godet S. Crystallographic reconstruction study of the effect of finish rolling temperature on the variant selection during bainite transformation in C–Mn high-strength steels // Metall. Mater. Trans. – 2014. – 45. – P. 5937–5955. https://doi.org/ 10.1007/s11661-014-2553-1.
  2. Zhao H., Palmiere E.J. Influence of cooling rate on the grain-refining effect of austenite deformation in a HSLA steel // Mater. Charact. – 2019. – V. 158. – P. 109990. https://doi.org/10.1016/ j.matchar.2019.109990.
  3. Guo H., Feng X., Zhao A., Li Q., Chai M. Effects of ausforming temperature on bainite transformation kinetics, microstructures and mechanical properties in ultra-fine bainitic steel // J. Mater. Res. Technol. – 2020. – V. 9. – P. 1593–1605. https://doi.org/10.1016/j.jmrt.2019.11.085.
  4. Mirzaei A., Ghaderi R., Hodgson P.D., Ma X., Rohrer G.S., Beladi H. The influence of parent austenite characteristics on the intervariant boundary network in a lath martensitic steel // J. Mater. Sci. Technol. – 2022. – N 57. – P. 8904–8923. https://doi.org/10.1007/s10853-022-07204-w.
  5. Куртева К. Ю., Яковлева Е. А., Федосеев М. Л., Зисман А. А., Хлусова Е. И. Влияние режима горячей деформации на текстуру, микроструктуру и механические свойства бейнитной стали после закалки с прокатного нагрева с отпуском // Вопросы материаловедения. – 2023. – № 4 (116). – С. 20–31.
  6. Miyamoto G., Iwata N., Takayama N., Furuhara T. Reconstruction of parent austenite grain structure based on crystal orientation map of bainite with and without ausforming // ISIJ Int. – 2011. – N 51. – P. 1174–1178. https://doi.org/10.2355/isijinternational.51.1174.
  7. Abbasi M., Nelson T.W., Sorensen C.D., Wei L. An approach to prior austenite reconstruction // Mater. Charact. – 2012. – N 1–8. https://doi.org/10.1016/J.MATCHAR.2012.01.010.
  8. Abbasi M., Dong-Ik Kim, Nelson T.W. EBSD and reconstruction of pre-transformation microstructures, examples and complexities in steels // Mater. Charact. – 2014. – N 95. – P. 219–231. https://doi.org/ 10.1016/j.matchar.2014.06.023.
  9. Huang C.Y., Ni H.C., Yen H.W. New protocol for orientation reconstruction from martensite to austenite in steels // Materialia. – 2020. – N 9. – P. 100554. https://doi.org/10.1016/j.mtla.2019.100554.
  10. Hielscher R., Nyyssönen T., Niessen F., Gazder A.A. The variant graph approach to improved parent grain reconstruction // Materialia. – 2022. – V. 22. – P. 101399. https://doi.org/ 10.1016/j. mtla.2022.101399.
  11. Kumar S., Manda S., Giri S.K., Kundu S., Karagadde S., Balamuralikrishnan R., Murty S.V.S.N., Anoop C.R., Samajdar I. Relating martensite variant selection with prior austenite micro-structure: A coupled study of experiments and pixel-by-pixel reconstruction // Mater. Charact. – 2023. – V. 199. – P. 112822. https://doi.org/10.1016/j.matchar.2023.112822.
  12. Kurdjumov G., Sachs Z. Über den Mechanismus der Stahlhärtung, Zeitschrift für Physic. – 1930. – N 64. – P. 325–343.
  13. Greninger A. B., Troyano A. R. The mechanism of martensite formation // Metals Trans. – 1949. – N 185. – P. 590–598.
  14. Nishiyama Z. Lattice distortion and atomic displacements during the fcc/bcc martensitic transformation // Sci. Rep. Tohoku Imper. Univ. – 1934. – V. 23. – P. 637–644.
  15. Zolotorevsky N. Y., Panpurin S. N., Zisman A.A., Petrov S. N. Effect of ausforming and cooling condition on the orientation relationship in martensite and bainite of low carbon steels // Mater. Charact. – 2015. – V. 107. – P. 278–282. https://doi.org/10.1016/j.matchar.2015.07.023.
  16. Nyyssönen T., Isakov M., Peura P., Kuokkala V. T. Iterative determination of the orientation relationship between austenite and martensite from a large amount of grain pair misorientations // Metall. Mater. Trans. – 2016. – V. 47A. – P. 2587–2590. https://10.1007/s11661-016-3462-2.
  17. Brust A. F., Payton E. J., Sinha V., Yardley V. A., Niezgoda S. R. Characterization of martensite orientation relationships in steels and ferrous alloys from EBSD data using bayesian inference // Metall. Mater. Trans. – 2020. – V. 51A. – P. 142–143. https://doi.org/10.1007/s11661-019-05514-4.
  18. Brown E. L., Deardo A. J. On the origin of equiaxed austenite grains that result from the hot rolling of steel // Metall. Trans. – V. 12A (1981). – P. 39–47. https://doi.org/10.1007/BF02648506.
  19. Jonas J. J. Transformation textures associated with steel processing // Microstructure and texture in steels / Eds. Haldar A. and Suwas S. – Springer, New York, 2009. – P. 3–16.
  20. Eres-Castellanos A., Morales-Rivas L., Jimenez J. A., Caballero F. G., Garcia-Mateo C. Effect of ausforming on the macro- and micro-texture of bainitic microstructures // Metall. Mater. Trans. – 2021. – N 52A. – P. 4033–4052. https://doi.org/10.1007/s11661-021-06363-w.
  21. Winkelmann A., Nolze G., Cios G., Tokarski T., Bala P. Refined calibration model for improving the orientation precision of electron backscatter diffraction maps // Materials. – 2020. – N. 13. – P. 2816. https://doi.org/10.3390/ma13122816.
  22. Bain E. C. The nature of martensite // Trans. AIME. – 1924. – N 70. – P. 25–46.
  23. Morsdorf L., Tasan C. C., Ponge D., Raabe D. 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence // Acta Mater. – 2015. – N 95. – P. 366–377. http://dx.doi.org/10.1016/j.actamat.2015.05.023.
  24. Chakraborty A., Webster R. F., Primig S. Lath martensite substructure evolution in low-carbon microalloyed steels // J. Mater. Sci. – 2022. – V. 57. – P. 10359–10378. https://doi.org/10.1007/s10853-022-07275-9.
  25. Shibata A., Miyamoto G., Morito Sh., Nakamura A., Moronaga T., Kitano H., Gutierrez-Urrutia I., Hara T., Tsuzaki K. Substructure and crystallography of lath martensite in as-quenched interstitial-free steel and low-carbon steel // Acta Mater. – 2023. – N 246. – P. 118675. https://doi.org/10.1016/j.actamat.2023.118675.
  26. Cayron C., Baur A., Logé R. Intricate morphologies of laths and blocks in low-carbon martensitic steels // Materials and Design. – 2018. – N 154. – P. 81–95. https://www.elsevier.com/open-access/userlicense/1.0.
  27. Князюк Т. В., Новоскольцев Н. С., Зисман А. А., Хлусова Е. И. Влияние микролегирования ниобием на кинетику статической и динамической рекристаллизации при горячей прокатке среднеуглеродистых высокопрочных сталей // Вопросы материаловедения. – 2020. – № 1 (101). – С. 5–15.
  28. Engler O., Randle V. Introduction to texture analysis: Macrotexture, microtexture, and orientation mapping. – Taylor and Francis group, Abingdon-on-Thames, 2010. – 488 pp. https://doi.org/10.1201/9781420063660.
  29. Бернштейн М. Л. Термомеханическая обработка металлов и сплавов. – М.: Металлургия, 1968. – 1171 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).