Structure forming processes in economically alloyed shipbuilding steel of 890 MPa yield strength level with a bainite-martensite structure when microalloyed with vanadium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of growth of austenite grains during heating, the features of the processes of dynamic and static recrystallization occurring under various temperature-deformation regimes of hot plastic deformation have been studied. Phase transformations have been studied during continuous cooling of hot-worked austenite in a low-carbon low-alloy steel with a guaranteed yield strength of 890 MPa. As a result, the boundary temperature-deformation conditions for the formation of a finely dispersed bainite-martensite structure were established, on the basis of which technological modes for the production of thick-plate rolled products in industrial conditions were developed. The structure and properties of rolled sheets 35 mm thick from shipbuilding sparingly alloyed steel of strength level 890 are presented.

About the authors

O. V. Sych

NRC 'Kurchatov Institute' – CRISM 'Prometey'

Author for correspondence.
Email: npk3@crism.ru
Cand Sc. (Eng) 49 Shpalernaya St, St Petersburg

S. V. Korotovskaya

NRC 'Kurchatov Institute' – CRISM 'Prometey'

Email: npk3@crism.ru
Cand Sc. (Eng) 49 Shpalernaya St, St Petersburg

N. S. Novoskoltsev

NRC 'Kurchatov Institute' – CRISM 'Prometey'

Email: npk3@crism.ru
49 Shpalernaya St, St Petersburg

E. I. Khlusova

NRC 'Kurchatov Institute' – CRISM 'Prometey'

Email: npk3@crism.ru
Dr Sc. (Eng) 49 Shpalernaya St, St Petersburg

References

  1. Kh lusova , E.I., Sych , O.V., Orlov, V.V., Khladostoikie stali. Struktura, svoistva, tekhnologii [Cold-resistant steel. Structure, properties, technologies], Fizika metallov i metallovedenie, 2021, V. 122, No 6, pp. 621-657.
  2. Sych , O.V., Nauchno-tekhnologicheskie osnovy sozdaniya khladostoikih stalei s garantirovannym predelom tekuchesti 315-750 MPa dlya Arktiki. Ch. 2: Tekhnologiya proizvodstva, struktura i kharakteristiki rabotosposobnosti listovogo prokata [Scientific and technological bases for the creation of cold-resistant steels with a guaranteed yield strength of 315-750 MPa for the Arctic. Part 2: Production technology, structure and performance characteristics of sheet metal], Voprosy Materialovedeniya, 2018, No 4 (96), pp. 14-41.
  3. Urt s ev, V.N., Kornilov, V.L., Shmakov, A.V., Krasnov, M.L., Stekanov, P.A., Platov, S.I., Mokshin , E.D., Urt s ev, N.V., Schastlivt s ev, V.M., Razumov, I.K., Gornostyrev, Y.N., Formirovanie strukturnogo sostoyaniya vysokoprochnoi nizkolegirovannoi stali pri goryachei prokatke i kontroliruemom okhlazhdenii [Formation of the structural state of high-strength low-alloy steel during hot rolling and controlled cooling], Fizika metallov i metallovedenie, 2019, V. 120, No 12, pp. 1335-1344.
  4. Opiela , M., Ozgowicz, W., Effects of Nb, Ti and V on recrystallization kinetics of austenite in microalloyed steels, Journal of Achievements in Materials and Manufacturing Engineering, 2012, V. 55/2, pr. 759-771.
  5. . Gorelik , S.S., Dobatkin , S.V., Kaputkina , L.M., Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys], Moscow: MISiS, 2005.
  6. Fernandez, A.I., Uranga , P., Lopez, B., Rodrigue z-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb-Ti Microalloyed steels, Materials Science and Engineering A, 2003, V. A361, pr. 367-376.
  7. Sakai, T., Belyakov, A., Kaibyshev, R., Miura , H., Jonas, J.J., Dynamic and postdynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 2014, V. 60, pp. 130-207.
  8. Rybin, V.V., Bolshie plasticheskie deformatsii i razrushenie metallov [Large plastic deformations and destruction of metals], Moscow: Metallurgiya, 1986.
  9. Koneva , N.A., Trishkina , L.I., Kozlov, E.V., Fizika substrukturnogo i zernogranichnogo uprochneniya [Physics of substructural and grain boundary hardening], Fundamentalnye problemy sovremennogo materialovedeniya, 2014, V. 11, No 1, pp. 40-49.
  10. Kozlov, E.V., Kon eva , N.A., Popova , N.A., Fragmentirovannaya substruktura, formiruyushchayasya v OSK-stalyakh pri deformatsii [Fragmented substructure formed in BCC steels during deformation], Izvestiya RAN. Seriya fizicheskaya, 2004, No 10, pp. 1419-1427.
  11. Isasti, N., Jorge-Badiola , D., Taheri, M.L., Uranga , P., Phase Transformation Study in Nb-Mo Microalloyed Steels Using Dilatometry and EBSD Quantification, Metallurgical and materials transactions A., 2013, V. 44A, pp. 3552-3563.
  12. Oryshchenko, A.S., Golosienko, S.A., Kh lusova, E.I., Sych, O.V., Korotovskaya, S.V., Ryabov, V.V., Shumilov, E.A., Yashina, E.A., Vladimirov, A.D., Popkov, A.G., Kh adeev, G.E., Gelever, D.G., Listovoi prokat, izgotovlenny iz vysokoprochnoi stali [Sheet metal made of high-strength steel], Patent RF № 2726056, Publ. July 8, 2020.
  13. Soshina, T.V., Zisman , A.A., Kh lusova, E.I., Vyyavlenie byvshih zeren austenita metodom termicheskogo travleniya v vakuume pri imitatsii TMO nizkouglerodistykh stalei [Identification of former austenite grains by thermal etching in vacuum with imitation of low-carbon steel TMO], Metallurg, 2013, No 2, pp. 63-70.
  14. Garcia de Andres, C., Bartolome, M.J., Capdevila , C., San Martı n , D., Caballero, F.G., Lopez, V., Metallographic techniques for the determination of the austenite grain size in mediumcarbon microalloyed steels, Materials Characterization, 2001, No 46, pp. 389-398.
  15. Korotovskaya, S.V., Sych, O.V., Kh lusova, E.I., Novoskoltsev, N.S., Vliyanie mikrolegirovaniya na osobennosti strukturoobrazuyushchikh protsessov pri goryachei plasticheskoi deformatsii [The effect of microalloying on the features of structure-forming processes in hot plastic deformation], Voprosy Materialovedeniya, 2020, No 4 (104), pp. 5-16.
  16. Zolotorevsk y, N.Yu., Zisman , A.A., Panpurin , S.N., Titovets, Y.F., Golosienko, S.A., Kh lusova , E.I., Vliyanie razmera zerna i deformatsionnoi substruktury austenita na kristallograficheskie osobennosti beinita i martensita nizkouglerodistykh stalei [Influence of grain size and deformation substructure of austenite on crystallographic features of bainite and martensite of low-carbon steels], MiTOM, 2013, No 10, pp. 39-48.
  17. Sych, O.V., Kor otovskaya, S.V., Khlusova E.I., Golubeva M.V., Popkov A.G., Yashina, E.A., Struktura i svoistva novykh stalei proizvodstva PAO “Severstal” dlya Arkticheskikh konstruktsy [Structure and properties of new steels manufactured by PJSC ‘Severstal’ for Arctic structures], Metallurg, 2022, No 11, pp. 12-24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».