Том 26, № 2 (2024)

Обложка

Весь выпуск

ТЕХНОЛОГИЯ

Исследования соединений AA7075, сваренных трением с перемешиванием и ультразвуковым воздействием: механические свойства и анализ разрушения

Гайквад В., Чинчаникар С.

Аннотация

Введение. Прочность сварного соединения и отношение прочности сварного соединения к прочности основного металла, особенно в алюминиевых сплавах, имеют решающее значение для аэрокосмической, оборонной и промышленной сфер. Обработка сварных соединений, например дробеструйная и лазерная нагартовка, значительно повышает эффективность и прочность соединения, увеличивая усталостную долговечность, зернистую структуру и прочность на растяжение. Цель работы. Обзор литературы показывает, что сварка трением с перемешиванием и ультразвуковым воздействием (UVaFSW) и послесварочная обработка улучшают механические свойства и текучесть материала. Однако исследований, посвященных изучению влияния скорости сварки, скорости вращения инструмента и дробеструйной обработки после сварки UVaFSW-соединений AA7075-T651, проведено ограниченное количество. Методы исследования. Изучались прочность на растяжение, микротвердость, микроструктура и поведение при разрушении AA7075-T651-соединения, сваренного трением с перемешиванием (UVaFSW), с учетом влияния вращения инструмента, скорости сварки и дробеструйной обработки после сварки. Результаты и обсуждение. UVaFSW-соединения, подвергнутые дробеструйной обработке после сварки, продемонстрировали максимальную прочность на разрыв 373,43 МПа, микротвердость 161 HV и наименьшую шероховатость поверхности 15,16 мкм при скорости сварки 40 мм/мин по сравнению с соединениями, полученными сваркой трением с перемешиванием (FSW). Эти результаты показывают, что дробеструйная обработка улучшила механические свойства и качество поверхности UVaFSW-соединений. Высокая прочность на разрыв и низкая шероховатость поверхности делают эти соединения пригодными для применений, требующих прочности и эстетики. Разрушение UVaFSW-соединений после дробеструйной обработки в основном происходило в зоне термического влияния (ЗТВ) во время испытания на растяжение. Это можно объяснить более высокой температурой во время сварки, которая привела к росту зерен и снижению прочности материала в ЗТВ. UVaFSW-соединение, подвергнутое дробеструйной обработке, имеет более равномерное распределение зерен, чем FSW-соединение, что способствует более высокому временному сопротивлению разрушению. На поверхности излома UVaFSW-соединений, подвергнутых дробеструйной обработке, наблюдались более крупные, равноосные и неглубокие ямки, что привело к более высокому временному сопротивлению разрушению (sв) и микротвердости по сравнению с обычными FSW-соединениями. Механические свойства и микроструктура, наблюдаемые в зонах сварки UVaFSW-соединений, подвергнутых дробеструйной обработке, превосходят свойства обычных FSW-соединений. Однако необходимы дальнейшие исследования для определения конкретных факторов, способствующих этому локализованному разрушению в ЗТВ, учитывая влияние параметров дробеструйной обработки. Это исследование также предполагает возможность оптимизации UVaFSW-соединений из AA7075-T651, подвергнутых дробеструйной обработке.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):6-22
pages 6-22 views

Получение покрытий с высокой инфракрасной излучательной способностью

Сирота В.В., Зайцев С.В., Лимаренко М.В., Прохоренков Д.С., Лебедев М.С., Чуриков А.С., Даньшин А.Л.

Аннотация

Введение. Одним из перспективных современных способов формирования покрытий является детонационное газодинамическое напыление. Покрытия, получаемые этим способом, имеют высокую адгезию к подложке, плотную структуру и заданные функциональные свойства. Разработка технологии получения функциональных покрытий с высоким коэффициентом излучения в инфракрасном диапазоне является насущной необходимостью развития высокотемпературных промышленных процессов и технологий. В высокотемпературных промышленных процессах тратится большое количество энергии, поэтому повышение энергоэффективности промышленного оборудования рассматривается как один из способов преодоления постоянно растущего энергетического кризиса. С этой целью для промышленных печей были разработаны покрытия с высокой инфракрасной излучательной способностью. Эти покрытия обычно наносятся на стенки печи, что значительно повышает энергоэффективность за счет увеличения передачи тепла от теплоотдающих поверхностей печи. Целью работы является получение покрытий с высокими показателями излучения в инфракрасном диапазоне для дальнейшей рекомендации по их использованию в хлебопекарных печах производства Шебекинского машиностроительного завода. Методы исследования образцов покрытий, полученных детонационным газотермическим методом: растровая электронная микроскопия, рентгенофазовый анализ, энергодисперсионный анализ, инфракрасная спектроскопия. Результаты и обсуждение. В работе были исследованы микроструктура, фазовый состав, излучательная способность и стойкость к термоциклированию покрытий Fe2O3, Al2O3 + 10 % Fe2O3 и Ti + 10 % Fe2O3, полученных методом детонационного газодинамического напыления порошков. Результаты исследования показали, что полученные покрытия имеют плотную структуру, повышенный коэффициент излучения и устойчивость к циклам температурной обработки, в результате воздействия которых структура кристаллической решетки покрытий не изменяется.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):23-37
pages 23-37 views

Исследование сил резания и обрабатываемости при фрезеровании порошковой коррозионно-стойкой стали, полученной по технологии прямого лазерного выращивания (LMD)

Бабаев А.С., Козлов В.Н., Семёнов А.Р., Шевчук А.С., Овчаренко В.А., Сударев Е.А.

Аннотация

Введение. Аддитивные технологии производства приближенных по геометрической форме заготовок требуют постобработки. Это относится к применению режущего инструмента на операциях фрезерования при обработке ответственных поверхностей. К последним предъявляются высокие требования по точности линейно-угловых размеров и качеству поверхностного слоя. Актуальной задачей остаётся увеличение производительности обработки при регистрации сил резания и шероховатости поверхности для выработки технологических рекомендаций. Цель работы: экспериментальное определение режимов резания, обеспечивающих наибольшую производительность при фрезеровании концевыми твёрдосплавными фрезами LMD-заготовок (Laser Metal Deposition) из стали 12Х18Н10Т при сохранении работоспособности фрезы и требуемой шероховатости. В работе исследованы свойства и микроструктуры образцов, полученные вдоль и поперёк направления выращивания. Установлено и формализовано влияние подачи (при движении фрезы поперёк и вдоль направления выращивания), глубины и ширины фрезерования, а также скорости на составляющие силы резания и шероховатость обработанных поверхностей при встречном фрезеровании заготовок из LMD-стали 12Х18Н10Т концевыми фрезами из твёрдого сплава H10F диаметром 12 мм без износостойкого покрытия. Методами исследования являются динамическое измерение всех трёх составляющих силы резания с использованием трёхкомпонентного динамометра и измерение шероховатости профилометром-профилографом. Состояние и микрогеометрии режущих кромок контролировались до и после фрезерования с использованием сканирующей оптической и растровой электронной микроскопии. Результаты и обсуждение. Показано различие в силах резания в зависимости от схемы фрезерования – вдоль и поперёк направления выращивания. Исследования показали, что глубина фрезерования и скорость резания мало влияют на боковую и осевую составляющие силы резания. Сила подачи существенно увеличивается при увеличении глубины резания, особенно при подаче поперёк направления выращивания образца. Установлено, что все три составляющие силы резания прямо пропорциональны величине минутной подачи. Получены уравнения расчёта всех трёх составляющих силы резания при изменении минутной подачи.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):38-56
pages 38-56 views

Влияние режимов лазерной наплавки на геометрические размеры стального трека

Долгова С.В., Маликов А.Г., Голышев А.А., Никулина А.А.

Аннотация

Введение. Лазерная наплавка – одно из ведущих направлений в области аддитивных технологий, заключающееся в послойном наращивании материала при использовании лазера в качестве источника энергии. Для получения качественного изделия необходимо правильно подобрать оптимальные параметры выращивания. Проблема заключается в том, что такая оптимизация необходима для каждого оборудования, поскольку незначительные отличия в его характеристиках могут вносить существенные изменения в параметры послойного выращивания. Для того чтобы определить оптимальный режим выращивания, достаточно проанализировать влияние различных параметров оборудования на характеристики единичных треков. Поэтому цель данной работы заключается в определении наиболее важных параметров лазерного излучения, влияющих на процесс наплавки, и оптимального режима выращивания единичного трека хромоникелевой стали. В работе исследованы единичные треки, полученные лазерной наплавкой порошка из аустенитной хромоникелевой стали марки AISI 316L. В качестве факторов оптимизации выступали такие характеристики, как мощность лазера, скорость движения луча, расход подаваемого порошка и размер лазерного пятна. Длина волны лазерного излучения составляла 1,07 мкм. Методы исследования. Для определения качества и геометрических размеров одиночных треков исследовалась макроструктура поперечных сечений образцов с использованием методов металлографии и растровой электронной микроскопии. Результаты и обсуждение. Установлено, что оптимальный режим выращивания единичных треков стали 316L характеризуется мощностью лазерного излучения 1250 Вт и скоростью сканирования 25 мм/с. При этом оптимальный показатель расхода порошка составляет 12 г/мин, а размер лазерного пятна – 4,1 мм. В работе показано, что наибольшее влияние на коэффициент эффективного использования порошкового материала оказывают расход порошка и размер лазерного пятна. Их изменение позволяет повысить производительность наплавки на 10–15 %.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):57-70
pages 57-70 views

Оценка сварочно-технологических свойств электродных покрытий основного типа различных производителей электродов для сварки трубных деталей и сборочных единиц поверхностей теплообмена котлоагрегатов

Карлина Ю.И., Кононенко Р.В., Попов М.А., Дерюгин Ф.Ф., Бянкин В.Е.

Аннотация

Введение. В энергетической промышленности внедряются новые марки высокопрочных сталей, процессы обработки и ремонта. В то же время ручная дуговая сварка остается основным технологическим процессом при ремонте оборудования в условиях тепловых электростанций. Сварочные материалы, используемые при ремонте оборудования, должны обеспечивать сопоставимые с основным металлом механические свойства сварного шва. Сварочная промышленность уже давно сталкивается с проблемой высокой чувствительности электродов с основным типом к впитыванию влаги. Высокая склонность к холодному растрескиванию, вызванная диффузионным водородом, и водородное охрупчивание представляют собой основные препятствия на пути более широкого использования электродов с основным типом покрытия для сварки высокопрочных сталей. Поступление водорода при дуговой сварке является результатом присутствия водорода в атмосфере дуги, загрязненного водородом присадочного материала или локальных остатков водорода на исходном материале. Во время сварки молекулярный водород дислоцирует под действием энергии дуги и затем легко поглощается расплавленным материалом. В настоящее время на рынке сварочных материалов присутствуют электроды с основным покрытием известных и проверенных марок, выпускаемые различными отечественными и иностранными производителями. Однако на практике встречаются случаи образования холодных трещин в сварном шве после сварки. Цель работы. Провести оценку сварочно-технологических свойств электродных покрытий основного типа различных производителей. В работе исследованы образцы, наплавленные электродами ТМУ-21У и ЦУ-5 разных производителей, и определено содержание диффузионно-подвижного водорода в наплавленном металле. Методами исследования являются механические испытания на статистическое растяжение, анализ химического состава и металлографические исследования. Определение содержания водорода, вызванного сваркой, может осуществляться с помощью различных методов количественного элементного анализа. Все методы испытаний включают сварку в определенных условиях с последующей как можно более быстрой глубокой заморозкой испытуемых образцов. Таким образом подавляются нежелательные процессы диффузии и сохраняется водород, введенный в металл сварного шва. Впоследствии диффундирующий водород десорбируется из испытуемых образцов контролируемым образом. Результаты и обсуждение. Оценка сварочно-технологических свойств электродов выявила неустойчивое горение дуги. Механические свойства наплавленного металла исследуемых электродов находятся на минимально допустимом уровне согласно требованиям нормативных документов. Концентрация водорода, присутствующего в металле дугового сварного шва, многофакторно зависит от процедуры сварки (процесса и параметров, используемых расходных материалов, а также условий окружающей среды, например влажности). Для качественной оценки содержание водорода более 15 см3/100 г считается высоким, а содержание водорода менее 5 см3/100 г считается очень низким. Представленные результаты. Проведенная оценка сварочно-технологических свойств электродов с основным покрытием показала удовлетворительные результаты. Механические свойства наплавленного металла по показателю «ударная вязкость» находятся на нижнем допустимом пределе, а относительное удлинение не соответствует требованиям нормативных документов. Содержание диффузионно-подвижного водорода в наплавленном металле выше, чем заявляемые производителями электродов показатели.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):71-94
pages 71-94 views

Определение скорости электрохимического растворения стали У10А в условиях ЭХРО с неподвижным катодом-инструментом

Янпольский В.В., Иванова М.В., Насонова А.А., Янюшкин А.С.

Аннотация

Введение. В заготовительном производстве при замене твердых сплавов на инструментальные стали возникают трудности при формообразовании поверхностей с обеспечением требуемых параметров производительности, качества и точности вследствие наличия неполной информации для назначения режимов электрохимической обработки указанного класса материалов. Этот факт требует проведения дополнительных исследований, позволяющих определить рациональные режимы обработки, которые обеспечивают необходимые технологические параметры (производительность, точность размеров и шероховатость поверхности). Цель работы: проведение исследований по установлению закономерностей электрохимического формообразования инструментальных сталей и определению режимов процесса формообразования. В работе исследованы особенности анодного растворения инструментальной стали У10А в водном растворе NaCl 10%-й концентрации. Диапазон изменения потенциалов составлял от 0 до 8 В. Определены технологические параметры производительности (выход по току для основной реакции и скорость электрохимического растворения при напряжении 8 В и давлении электролита 0,1 МПа). Методы исследования. Для поляризационных исследований выбран потенциодинамический метод исследования. Технологические эксперименты осуществлялись по схеме прошивания отверстий с неподвижным катодом-инструментом из нержавеющей стали без изоляции. В качестве катода-инструмента была выбрана игла круглого сечения с наружным диаметром 0,908 мм и внутренним 0,603 мм. Результаты и обсуждения. В результате проведенных исследований выявлено, что электрохимическое растворение инструментальной стали У10А в 10%-м водном растворе NaCl имеет активный характер в исследуемом диапазоне потенциалов от 0 до 8 В. Проведенные технологические эксперименты позволили установить размеры получаемых отверстий – средний диаметр 1,433 мм и глубину 0,574 мм. Выход по току составил 70,83 %. На основе анализа полученных экспериментальных данных установлено, что для обеспечения высокой производительности процесса электрохимического формообразования стали У10А в растворе 10%-го NaCl подача катода-инструмента должна составлять 0,2232 мм/мин, что соответствует скорости электрохимического растворения при исследуемых условиях формообразования.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):95-106
pages 95-106 views

ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ

Изучение отображения вибрационных возмущений в геометрии формируемой резанием поверхности при точении

Заковоротный В.Л., Гвинджилия В.Е.

Аннотация

Введение. Создание виртуальных цифровых моделей процесса обработки на металлорежущих станках является динамично развивающимся направлением повышения эффективности машиностроительного производства. Такие модели включают в себя подсистемы прогнозирования качества деталей. Точность и достоверность их работы напрямую зависят от построенной модели динамической системы резания, возмущенной силовым шумом, источники которого имеют различное физическое происхождение. Кроме этого, сама автономная динамическая система является генератором различных притягивающих множеств деформаций – например, предельных циклов или хаотических аттракторов. Учет разнообразных нелинейных преобразований в свойствах динамики процесса резания позволяет повысить адекватность модели реальным процессам и является актуальной задачей при построении систем имитационного моделирования динамики обработки поверхностей резанием. Предмет. Выполненные нами ранее исследования позволяют определить соответствующую деформационным траекториям геометрию формируемой резанием поверхности. Однако адекватность отображения рассчитанных траекторий в оценки геометрии остается не вполне ясной. Предлагаемая статья посвящена достижению адекватного отображения вычисленных, а также измеренных траекторий деформаций в геометрическую топологию детали. Цель работы – оценка отображения вибрационных возмущений системы в геометрию формируемой резанием поверхности. Метод и методология. Исследование носит экспериментально-теоретический характер. Содержание исследования включает в себя изучение соответствия частотных характеристик, полученных на модели и при реальной обработке. Главное внимание уделено отображению деформаций в геометрию детали. Для этого в статье рассматриваются функции когерентности между функциями деформаций и профилем детали. Результаты и обсуждения. Показано, что обусловленность этих преобразований имеет ограниченный частотный диапазон, в котором объяснение переменных составляющих формируемого рельефа является статистически значимым. Математическое моделирование динамической системы резания, основанное на механике взаимодействия инструмента и заготовки, позволяет адекватно прогнозировать формируемую резанием макрогеометрию детали. Полученный математический инструментарий может быть использован для создания систем прогнозирования геометрии обработанной поверхности.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):107-126
pages 107-126 views

Исследование кинетики формообразования деталей сферического подшипника скольжения из коррозионно-стойких сталей, полученных объемной штамповкой пористых заготовок

Гасанов Б.Г., Конько Н.А., Баев С.С.

Аннотация

Введение. Сферические порошковые подшипники скольжения широко применяются в различных отраслях машиностроения. Поэтому разработка перспективного варианта производства деталей сферического подшипника скольжения из порошков коррозионно-стойких сталей с заданными свойствами является актуальной задачей. Цель работы: исследование кинетики формообразования при холодной штамповке деталей сферических подшипников скольжения, полученных холодной штамповкой спеченных заготовок из порошков нержавеющих сталей, и оценка влияния химического состава смазочных материалов и конструкции прессующего инструмента на структуру и свойства наружного кольца подшипника. В работе исследованы материалы из распыленных порошков нержавеющих хромоникелевых сталей, полученные холодной штамповкой спеченных заготовок, покрытых смазочными материалами. Методы исследования: механические испытания на растяжение, металлографические исследования и моделирование технологического процесса холодной штамповки. Результаты и обсуждение. Выявлено, что на сопротивление и работу деформации, а также на кинетику формообразования наружного кольца сферического подшипника скольжения влияют химический состав порошков и смазочных материалов, микроструктура и механические свойства материала заготовки, а также конфигурации торцевых поверхностей пуансонов. Наиболее интенсивно уплотняются верхние и нижние кромки наружного подшипника в случае, когда торцы пуансонов изготовлены с углом фаски 30…40°. С увеличением относительной степени деформации по высоте до 0,30…0,35 их остаточная пористость составила 0,5…2,0 %. Показаны особенности определения деформированного состояния и расчета работы деформации при реализации предложенного метода и выбора технологических параметров процесса холодной штамповки деталей подшипников скольжения. Разработан простой способ расчета и экспериментального определения коэффициента контактного трения в процессе холодной штамповки пористых заготовок из нержавеющих сталей, позволяющий установить влияние состава смазочных материалов на сопротивление деформации при различных значениях степени радиальной деформации и разработать оптимальные методы холодной штамповки пористых заготовок при производстве деталей различной сложности.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):127-142
pages 127-142 views

Влияние динамических характеристик процесса резания на шероховатость поверхности детали при токарной обработке

Гвинджилия В.Е., Фоминов Е.В., Моисеев Д.В., Гамалеева Е.И.

Аннотация

Введение. В основе формирования поверхности детали при ее обработке на металлорежущем станке лежат правильно подобранные режимы резания. Комплексные методики обеспечения заданного качества поверхности детали также учитывают геометрию инструмента, его состояние и включают в себя поправки на отклонение инструмента от траектории, заданной системой ЧПУ, под влиянием кинематических возмущений и биений шпинделя. Предмет. В статье анализируется связь между режимами резания, динамическими характеристиками процесса точения и их отображением в шероховатость поверхности. Цель работы: оценить влияние технологических режимов резания с учетом вибрационной активности инструмента на шероховатость обработанной поверхности с помощью имитационного моделирования. Метод и методология. Приводится математическое моделирование динамики процесса резания, на основе которого строится цифровая имитационная модель. Предлагается методика использования имитационной модели для определения оптимальных режимов резания и предсказания шероховатости поверхности с учетом вибраций инструмента. С помощью экспериментов и анализа частотных характеристик вибраций инструмента проводится валидация созданной модели, уточняются параметры подсистемы модели сил резания и динамической подсистемы инструмента, а также строятся геометрические топологии поверхности детали. Вычисленные силы резания сравниваются с экспериментальными силами, при этом наблюдаются схожие закономерности и уровни характеристик. Предлагается оценка оптимальности подобранных режимов резания на основе анализа спектра колебаний инструмента относительно заготовки и результатов симуляции цифровой модели. Результаты и обсуждение. Приводится сравнение результатов цифрового моделирования геометрической поверхности детали и реальной поверхности, полученной в ходе натурного эксперимента. Показано, что шероховатость реальной поверхности, полученной при обработке с постоянными режимами резания, варьируется относительно шероховатости поверхности имитационной модели в пределах не более 0,066 мкм.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):143-157
pages 143-157 views

Моделирование конструкций сборного абразивного инструмента

Лобанов Д.В., Скиба В.Ю., Голюшов И.С., Смирнов В.М., Зверев Е.А.

Аннотация

Введение. Одним из самых распространенных видов финишной обработки является шлифование. Шлифование позволяет получать поверхности с требуемыми качественными параметрами и является одним из доступных и производительных способов при обработке высокопрочных и труднообрабатываемых материалов. Наиболее широкое применение в машиностроении для обработки изделий находят шлифовальные круги. Применение данного абразивного инструмента способствует увеличению производительности обработки за счет обеспечения съема значительного слоя материала. Кроме того, шлифовальные круги имеют более продолжительный срок службы и находят широкое применение при реализации гибридных технологий, основанных на совмещении механического (абразивного), электрического, химического и теплового воздействий в различном их сочетании. Разнообразие форм корпуса инструмента и видов абразива позволяет использовать круги в самых разнообразных сферах производства. Одним из способов анализа и проектирования нового инструмента является численное моделирование. В рамках данной научной работы было выбрано гра?фовое моделирование, поскольку оно более наглядно и понятно отображает будущую конструкцию инструмента, что позволяет упростить процесс концептуального проектирования объекта по сравнению с другими видами моделирования. Целью работы является разработка методики графового моделирования сборного абразивного инструмента, позволяющей повысить эффективность инструментального обеспечения производства. Методика исследований. Теоретические исследования выполнены с использованием основных положений системного анализа, геометрической теории формирования поверхностей, конструирования режущего инструмента, теории графов, математического и компьютерного моделирования. Для решения вышеописанной задачи нами были изучены имеющиеся конструкции сборных шлифовальных кругов. Производился анализ видов абразивной части, методов закрепления абразивной режущей части на корпусе круга, применяемых материалов для изготовления корпуса, характеристик корпуса круга и схем крепления. Результаты и обсуждения. Разработана методика моделирования, основанная на теории графов. В результате анализа известных конструкций сборных абразивных инструментов выявлены их основные особенности, позволяющие описать конструкцию кругов. На основании полученных данных представлена обобщенная гра?фовая модель сборного абразивного инструмента, интегрирующая в себе все составляющие компоненты и отображающая условную конструктивную связь между ними. Произведена апробация разработанной методики на примере двух конструкций сборных шлифовальных кругов. В процессе теоретических исследований было установлено, что эффективность проектирования сборного абразивного инструмента может быть повышена в 2–4 раза за счет применения разработанной методики моделирования.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):158-173
pages 158-173 views

МАТЕРИАЛОВЕДЕНИЕ

Термическая стабильность микроструктуры сплава Mg-Y-Nd в экструдированном состоянии

Ерошенко А.Ю., Легостаева Е.В., Глухов И.А., Уваркин П.В., Толмачев А.И., Шаркеев Ю.П.

Аннотация

Введение. На сегодняшний день биорезорбируемые магниевые сплавы, обладающие необходимым комплексом физико-механических, коррозионных и биологических характеристик, являются перспективными материалами в ортопедии и сердечно-сосудистой хирургии. Добавление в состав магниевых сплавов редкоземельных элементов (РЗМ), таких как иттрий, неодим и церий, приводит к улучшению характеристик сплавов. В сравнении с широко используемыми титановыми сплавами магниевые сплавы имеют ряд преимуществ: они способны резорбировать в организме, что исключает необходимость повторных хирургических операций по извлечению имплантата. Биосовместимые сплавы на основе магния характеризуются достаточно низким модулем упругости (10–40 ГПа), близким к модулю упругости кортикальной кости, что снижает контактное напряжение в системе кость-имплантат. В то же время уровень прочностных свойств магниевых сплавов, легированных РЗМ, не всегда соответствует требованиям, предъявляемым для медицинских приложений. Перспективными являются методы интенсивной пластической деформации (ИПД), например равноканальное угловое прессование, кручение под давлением, мультиосевая ковка (abc-прессование), экструзия и другие, позволяющие за счет измельчения зерненной структуры достигать высокого уровня механических свойств в металлах и сплавах. Применение методов ИПД существенно повышает конструктивную прочность магниевых сплавов в результате получения ультрамелкозернистого (УМЗ) и (или) мелкозернистого (МЗ) состояния. Актуальными являются вопросы, связанные с исследованием термической стабильности и структурно-фазового состояния сплавов на основе магния с необходимым уровнем механических свойств. Целью работы являлось установление влияния термического воздействия на микроструктуру экструдированного сплава Mg-Y-Nd. Методы исследования. В качестве объекта исследования был выбран сплав Mg-2,9Y-1,3Nd (масс. %): Mg 95,0; Y 2,9; Nd 1,3; Fe £ 0,2; Al £ 0 в экструдированном состоянии. С целью исследования термостабильности микроструктуры образцы сплава отжигали в течение одного часа в аргоне при температурах 100, 300, 350, 450, 525 °С. Микроструктуру и фазовый состав образцов исследовали с помощью оптической микроскопии, просвечивающей и сканирующей электронной микроскопии, рентгеноструктурного анализа. Результаты и обсуждение. Показано, что в деформированном экструзией магниевом сплаве Mg-2,9Y-1,3Nd формируется бимодальная мелкозернистая микроструктура. Установлено, что помимо стабильной основной a-фазы магния в структуре образуются также интерметаллидные частицы Mg24Y5 и выделения b-, b¢- и b1-фаз. Термическое воздействие в интервале температур 100…450 °С в течение одного часа не оказывает влияния на общий характер структуры в сплаве Mg-2,9Y-1,3Nd, но способствует увеличению линейных размеров выделений b-, b¢- и b1-фаз. В диапазоне температур отжига 300…450 °С наблюдается изменение морфологии b-, b¢- и b1-фаз при сохранении среднего размера зерна основной a-фазы. Отжиг при 525 °С приводит к заметной трансформации бимодальной микроструктуры, связанной с активным ростом зерна основной фазы и размеров частиц Mg24Y5, а также выделений b-, b¢- и b1-фаз. Отжиги в интервале температур 100…450 °С приводят к увеличению линейных размеров частиц Mg24Y5, выделений b-, b¢- и b1-фаз и сохранению бимодальной структуры в сплаве Mg-2,9Y-1,3Nd.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):174-185
pages 174-185 views

Влияние технологических параметров процесса прямого лазерного выращивания на качество формируемого объекта из титанового сплава ВТ23

Базалеева К.О., Сафарова Д.Э., Понкратова Ю.Ю., Луговой М.Е., Цветкова Е.В., Алексеев А.В., Железный М.В., Логачев И.А., Басков Ф.А.

Аннотация

Введение. Прямое лазерное выращивание (ПЛВ) рассматривается как перспективный метод формирования изделий сложной конфигурации из сплавов на основе титана, так как позволяет минимизировать применение механообработки и потери материала на отходы. В настоящее время технологический процесс ПЛВ титанового сплава ВТ23 не разработан, не исследованы особенности структуры сплава после данного метода получения, которые позволят определить область применения материала в состоянии после ПЛВ. Цель работы. Определение оптимальных технологических параметров процесса ПЛВ для синтеза качественных изделий из титанового сплава ВТ23. Методы исследования. В работе проанализированы образцы сплава, полученные в интервалах мощности лазерного излучения 700…1300 Вт с шагом 100 Вт, скорости сканирования 600…1000 мм/мин с шагом 200 мм/мин и расстояния между соседними лазерными треками 0,5…0,9L (L - ширина трека) с шагом 0,2L. Исследование элементного состава порошкового материала проводилось методами рентгенофлуоресцентного анализа и восстановительного сжигания в газоанализаторе. Структура объектов, полученных методом ПЛВ, анализировалась методами металлографического и рентгенофазового анализа, а также определялось значение их микротвердости. Результаты и обсуждение. Установлено, что качественные объекты без трещин, с низкой пористостью могут быть синтезированы из сплава ВТ23 методом ПЛВ при использовании следующих технологических параметров: мощности лазера 700…1100 Вт, скорости сканирования 800…1000 мм/мин, расстояния между треками 0,5…0,7 от ширины отдельного трека L. Показано, что после всех исследованных режимов ПЛВ сплав ВТ23 имел дисперсную (a+β) структуру типа «корзиночное плетение». Выявлено, что независимо от режима ПЛВ количество β-фазы в структуре сплава составляет ~ 30 %. Показано, что микротвердость наплавленного материала не зависит от режима ПЛВ и составляет 460 HV.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):186-198
pages 186-198 views

Температуры окисления инструментальных вольфрамокобальтовых твердых сплавов

Ефимович И.А., Золотухин И.С.

Аннотация

Введение. Изделия, содержащие вольфрамокобальтовые твердые сплавы, широко используются в различных отраслях промышленности. Зачастую они работают при повышенной температуре, при которой, как отмечается в литературных источниках, наблюдается подверженность твердых сплавов сильному окислению в воздушной среде. Однако нет достаточно точных значений температур окисления, а также не установлены зависимости этих температур и скорости окисления твердых сплавов от концентрации кобальта при широком ее варьировании. Предметом исследования является процесс окисления вольфрамокобальтовых твердых сплавов. Цель работы – получение значений температур окисления вольфрамокобальтовых твердых сплавов с различным содержанием кобальтовой фазы по массе в диапазоне 3–20 %. Методы. Исследование динамики роста оксидных образований проводилось в воздушной среде. Образцы одинаковой длины нагревались до температуры 850 °С и охлаждались с одинаковой скоростью в печи дилатометра Netzsch 402 PC с толкателем при одновременной регистрации их абсолютного удлинения. Скорость окисления образца определялась косвенно по разнице его длины до нагрева и после остывания. Значения температур окисления определялись путем математического анализа графиков зависимости абсолютного удлинения образцов от температуры. Результаты и обсуждение. Получены экспериментальные зависимости абсолютного удлинения образцов вольфрамокобальтовых твердых сплавов от температуры в диапазоне от 20 до 850 °С, а для сплава с 8 % кобальта – до 1150 °С. Установлено, что скорость окисления вольфрамокобальтовых твердых сплавов линейно возрастает с увеличением концентрации карбидов вольфрама (уменьшается с увеличением концентрации кобальта). При нагреве выявлены две характерные температуры: начала окисления (631 ± 4 °С) и перехода к активному окислению (804 ± 11 °С). Установленные температуры одинаковы для различных соотношений концентраций карбидов вольфрама и кобальта. Применение. Результаты могут быть использованы при выборе температурных режимов работы изделий, изготовленных из вольфрамокобальтовых твердых сплавов.
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):199-211
pages 199-211 views

Исследование железоматричных композитов с карбидным упрочнением, полученных спеканием механоактивированных смесей титанидов железа с углеродом

Прибытков Г.А., Барановский А.В., Фирсина И.А., Акимов К.О., Кривопалов В.П.

Аннотация

Введение. Широко применяемым эффективным способом повышения износостойкости сталей и их сплавов является введение в структуру сплава дисперсных твердых частиц тугоплавких соединений (карбидов, боридов, силицидов). Наибольший практический интерес представляют композиты с матрицей из сплавов на основе железа (стали и чугуны), упрочненных частицами карбида титана. Основными структурными характеристиками, которые определяют твердость и износостойкость этих композитов, являются объемная доля, дисперсность и морфология частиц упрочняющей карбидной фазы. Структура композитов зависит от способа их получения. Широко используются методы порошковой металлургии в сочетании с предварительной механоактивацией порошковых смесей. Ранее было установлено, что в механоактивированных порошковых смесях ферротитана ФТи35С5, состоящего на 82 % из соединения (Fe,Al)2Ti, и сажи П-803 идет реакция с образованием композита, согласно рентгеноструктурному анализу состоящего из стальной связки и карбида титана. Реакция синтеза карбида идет в твердофазном режиме при температурах горения 900…950 °C. Поэтому не происходит огрубления структуры за счет роста карбидных частиц, что характерно для реакций в присутствии жидкой фазы. Промышленный ферротитан содержит много примесей (кремний, алюминий и др.). Целью настоящей работы было исследовать фазовый состав и структуру продуктов взаимодействия титанидов железа Fe2Ti и FeTi с углеродом в условиях реакционного спекания механоактивированных порошковых смесей и выяснить возможность синтеза железоматричных композитов, упрочненных субмикронными частицами карбида титана. Методы исследования. Структуру и фазовый состав спеченных прессовок из механоактивированных порошков исследовали методами оптической металлографии, рентгенофазового анализа и растровой электронной микроскопии (SEM) с определением элементного состава методом энергодисперсионной рентгеновской спектроскопии (EDX). Методика эксперимента. Для приготовления реакционных смесей использовали интерметаллидные порошки, полученные спеканием в вакууме прессовок из порошковых смесей железа и титана двух составов: 2Fe+Ti и Fe+Ti. В интерметаллидные порошки добавляли сажу в количестве, необходимом для того, чтобы весь титан, находящийся в интерметаллидах, был связан в карбид. Полученные смеси с добавлением спирта обрабатывали в течение 10 минут в планетарной мельнице Activator 2S при 755 об/мин (40g). Из механоактивированных смесей прессовали цилиндрические заготовки диаметром 20 мм, которые спекали в вакууме при температуре 1200 °С с изотермической выдержкой 60 минут. Результаты и обсуждение. Согласно результатам рентгеноструктурного анализа практически весь титан, содержащийся в титанидах железа, вступает в реакцию с углеродом с образованием карбида и восстановленного железа. Продукты спекания прессовок обоих составов содержат целевые фазы: карбид титана с признаками смещения его состава от эквиатомного в сторону титана и a-железо с параметрами решетки, близкими к справочным данным, а также незначительное количество других фаз. На электронномикроскопических изображениях (BSE) железная связка и карбид титана хорошо различимы благодаря тоновому контрасту: тяжелое железо более темное, чем карбид, состоящий из более легких элементов. Согласно результатам локального элементного анализа относительное содержание титана и углерода в карбиде действительно соответствует составу нестехиометрического карбида титана. Заключение. Спеканием механоактивированных порошковых смесей титанидов железа с углеродом (сажей) получены композиты, включающие карбид титана и альфа-железо. Гранулы композиционных порошков, полученные дроблением спеков, представляют интерес в качестве фидстоков для нанесения покрытий и в аддитивных технологиях, а также для получения плотных материалов другими методами компактирования: искровым плазменным спеканием (SPS) или горячим прессованием (HP).
Обработка металлов (технология • оборудование • инструменты). 2024;26(2):212-223
pages 212-223 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».