Determination of the rate of electrochemical dissolution of U10A steel under ECM conditions with a stationary cathode-tool

Abstract

Introduction. In blank production, when replacing hard alloys with tool steels, difficulties arise in shaping surfaces to ensure the required parameters of productivity, quality and accuracy, due to the presence of incomplete information for assigning electrochemical processing modes for this class of materials. This fact requires additional research to determine rational processing modes that provide the necessary technological parameters (productivity, dimensional accuracy and surface roughness). The purpose of the work is to conduct research to establish the patterns of electrochemical shaping of tool steels and determine the modes of the shaping process. The work investigated the features of anodic dissolution of U10A tool steel in an aqueous NaCl solution of 10 % concentration. The range of potential changes was from 0 to 8 V. Technological performance parameters were determined (current output for the main reaction and the rate of electrochemical dissolution at a voltage of 8 V and an electrolyte pressure of 0.1 MPa). Research methods. For polarization studies, a potentiodynamic research method was chosen. Technological experiments were carried out using the model of piercing holes with a stationary cathode-tool made of stainless steel without insulation. A circular cross-section with outer diameters of 0.908 mm and inner diameters of 0.603 mm was chosen as a cathode tool. Results and discussions: it is revealed that the electrochemical dissolution of U10A tool steel in a 10 % aqueous solution of NaCl is active in the studied potential range from 0 to 8 V. The technological experiments carried out made it possible to establish the dimensions of the resulting holes — an average diameter of 1.433 mm and a depth of 0.574 mm. The current efficiency was 70.83 %. Based on the analysis of the experimental data obtained, it is established that in order to ensure high productivity of the process of electrochemical forming of U10A steel in a solution of 10 % NaCl, the feed of the cathode tool should be 0.2232 mm/min, which corresponds to the rate of electrochemical dissolution under the studied forming conditions.

About the authors

V. V. Yanpolskiy

Email: yanpolskiy@corp.nstu.ru
ORCID iD: 0000-0002-7728-7623
Ph.D. (Engineering), Associate Professor, Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, yanpolskiy@corp.nstu.ru

M. V. Ivanova

Email: ivanova777888@yandex.ru
ORCID iD: 0000-0002-2449-8638
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, ivanova777888@yandex.ru

A. A. Nasonova

Email: a.nasonova@corp.nstu.ru
ORCID iD: 0009-0006-0194-8831
Novosibirsk State Technical University, 20 Prospekt K. Marksa, Novosibirsk, 630073, Russian Federation, a.nasonova@corp.nstu.ru

A. S. Yanyushkin

Email: yanyushkinas@mail.ru
ORCID iD: 0000-0003-1969-7840
D.Sc. (Engineering), Professor, I.N. Ulianov Chuvash State University, 15 Moskovsky Prospekt, Cheboksary, 428015, Russian Federation, yanyushkinas@mail.ru

References

  1. Дубровина Н.А., Ротман Е.Г. Основные факторы экономии ресурсов на предприятиях машиностроения // Вестник Самарского государственного университета. Серия: Экономика и управление. – 2012. – № 10. – С. 20–26.
  2. Emelyanova D.S., Kolesnichenko-Ianushev S.L., Tokarev M.A. Organizational and economic problems of applying quality management systems at engineering companies // Научно-технические ведомости СПбГПУ. Экономические науки. – 2019. – Т. 12, № 2. – С. 92–102. – doi: 10.18721/JE.12209.
  3. Авдеев С.В., Золкин А.Л., Подолько П.М. Анализ стратегических трендов развития промышленности // Экономика и предпринимательство. – 2023. – № 9. – С. 455–458. – doi: 10.34925/EIP.2023.158.09.083.
  4. Белорусова Н.Л., Cтуденикина С.П. Влияние нормирования на эффективность использования материальных ресурсов // Вестник Полоцкого государственного университета. Серия D, Экономические и юридические науки. – 2019. – № 5. – С. 32–35.
  5. Mrugalska B., Ahmed J. Organizational agility in industry 4.0: a systematic literature review // Sustainability. – 2021. – Vol. 13. – P. 1–23. – doi: 10.3390/su13158272.
  6. Пименова Е.М., Арутюнян А.А. Бережливое производство как один из способов повышения экономической безопасности предприятия // Креативная экономика. – 2023. – Т. 17, № 11. – С. 4141–4152. – doi: 10.18334/ce.17.11.119405.
  7. Fernandes M., Correia D., Teixeira L. Lean maintenance practices in the improvement of information management processes: a study in the Facility Management division // Procedia Computer Science. – 2024. – Vol. 232. – P. 2269–2278. – doi: 10.1016/j.procs.2024.02.046.
  8. Lean Engineering – Identifying waste in engineering chains / S. Karch, A. Lüder, C. Listl, Nowacki, K. Hassan, R. Werner, T. Hohmann, S. Müller // Procedia CIRP. – 2023. – Vol. 120. – P. 463–468. – doi: 10.1016/j.procir.2023.09.020.
  9. Suetina T.A., Odinokov M.Y., Safina D.M. Benefits of project management at lean manufacturing tools implementation // Asian Social Science. – 2014. – Vol. 10 (20). – P. 62–66. – doi: 10.5539/ass.v10n20p62.
  10. Sundararajan N., Terkar R. Improving productivity in fastener manufacturing through the application of Lean-Kaizen principles // Materials Today: Proceedings. – 2022. – Vol. 62 (2). – P. 1169–1178. – doi: 10.1016/j.matpr.2022.04.350.
  11. Botti L., Mora C., Regattieri A. Integrating ergonomics and lean manufacturing principles in a hybrid assembly line // Computers & Industrial Engineering. – 2017. – Vol. 111. – P. 481–491. – doi: 10.1016/j.cie.2017.05.011.
  12. Электрохимическая обработка безвольфрамовых твердых сплавов / Х.М. Рахимянов, Б.А. Красильников, В.В. Янпольский, Д.Б. Красильников // Обработка металлов (технология, оборудование, инструменты). – 2010. – № 3 (48). – С. 3–7.
  13. Suppression of diamond tool wear in machining of tungsten carbide by combining ultrasonic vibration and electrochemical processing / X. Zhang, R. Huang, K. Liu, A.S. Kumar, H. Deng // Ceramics International. – 2018. – Vol. 44. – P. 4142–4153. – doi: 10.1016/j.ceramint.2017.11.215.
  14. Katiyar P.K., Randhawa N.S. A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques // International Journal of Refractory Metals and Hard Materials. – 2020. – Vol. 90. – P. 105251. – doi: 10.1016/j.ijrmhm.2020.105251.
  15. Denkena B., Krödel A., Lang R. Fabrication and use of Cu-Cr-diamond composites for the application in deep feed grinding of tungsten carbide // Diamond and Related Materials. – 2021. – Vol. 120. – P. 108668. – doi: 10.1016/j.diamond.2021.108668.
  16. Рахимянов Х.М., Янпольский В.В., Юсупов А.С. Струйная электрохимическая обработка стали 110Г13Л // Системы. Методы. Технологии. – 2016. – № 2 (30). – С. 34–38. – doi: 10.18324/2077-5415-2016-2-34-38.
  17. Electrochemical micro drilling of stainless steel with tool electrode jump motion / Z. Liu, Z.J. Qiu, C. Heng, N.S. Qu // Materials Science Forum. – 2009. – Vol. 626–627. – P. 333–338. – doi: 10.4028/ href='www.scientific.net/MSF.626-627.333' target='_blank'>www.scientific.net/MSF.626-627.333.
  18. Anasane S.A., Bhattacharyya B. Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium // The International Journal of Advanced Manufacturing Technology. – 2016. – Vol. 86. – P. 2147–2160. – doi: 10.1007/s00170-015-8309-2.
  19. Singh R.P., Trehan R. Electrochemical machining and allied processes: a comprehensive review // Journal of Solid State Electrochemistry. – 2023. – Vol. 27. – P. 3189–3256. – doi: 10.1007/s10008-023-05610-x.
  20. Deep micro-hole fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration / M. Wang, Y. Zhang, Z. He, W. Peng // Journal of Materials Processing Technology. – 2016. – Vol. 229. – P. 475–483. – doi: 10.1016/j.jmatprotec.2015.10.004.
  21. Electrochemical machining of burn-resistant Ti40 alloy / Z. Xu, J. Liu, D. Zhu, N. Qu, X. Wu, X. Chen // Chinese Journal of Aeronautics. – 2023. – Vol. 28. – P. 1263–1272. – doi: 10.1016/j.cja.2015.05.007.
  22. Electrochemical dissolution behavior of stainless steels with different metallographic phases and its effects on micro electrochemical machining performance / G. Liu, Z. Gong, Y. Yang, J. Shi, Y. Liu, X. Dou, C. Li // Electrochemistry Communications. – 2024. – Vol. 160. – P. 1–13. – doi: 10.1016/j.elecom.2024.107677.
  23. Process control in jet electrochemical machining of stainless steel through inline metrology of current density / M.Y. Zanjani, M. Hackert-Oschätzchen, A. Martin, G. Meichsner, J. Edelmann, A. Schubert // Micromachines. – 2019. – Vol. 10. – P. 245–272. – doi: 10.3390/mi10040261.
  24. Puchkov Yu.A., Poklad V.A., Shkretov Yu.P. A study of coatings on high-temperature nickel alloys by the potentiodynamic method // Metal Science and Heat Treatment. – 2005. – Vol. 47. – P. 239–243. – doi: 10.1007/s11041-005-0059-6.
  25. Wang M.H., Liu W., Peng W. Multiphysics research in electrochemical machining of internal spiral hole // The International Journal of Advanced Manufacturing Technology. – 2014. – Vol. 74. – P. 749–756. – doi: 10.1007/s00170-014-5938-9.
  26. Evans K.J., Rebak R.B. Repassivation potential of alloy 22 in chloride plus nitrate solutions using the potentiodynamic-galvanostatic-potentiostatic method // Materials Research Society Symposia Proceedings. – 2006. – Vol. 985. – P. 1–7. – doi: 10.1557/PROC-985-0985-NN03-13.
  27. Davydov A.D., Volgin V.M., Lyubimov V.V. Electrochemical machining of metals: Fundamentals of electrochemical shaping // Russian Journal of Electrochemistry. – 2004. – Vol. 40. – P. 1230–1265. – doi: 10.1007/s11175-005-0045-8.
  28. Фрейман Л.И., Макаров В.А., Брыскин И.Е. Потенциостатические методы в коррозионных исследованиях и электрохимической защите / под ред. Я.М. Колотыркина. – Л.: Химия, 1972. – 240 с.
  29. Седыкин Ф.В. Размерная электрохимическая обработка деталей машин. – М.: Машиностроение, 1976. – 302 с.
  30. Справочник по электрохимическим и электрофизическим методам обработки / под общ. ред. В.А. Волосатова. – Л.: Машиностроение, 1988. – 719 с. – ISBN 5-217-00267-0.
  31. Байсупов И.А., Волосатов В.А. Справочник молодого рабочего по электрохимической обработке. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1990. – 176 c. – ISBN 5-06-000932-7.
  32. Байсупов И.А. Электрохимическая обработка металлов. – М.: Машиностроение, 1981. – 220 с.
  33. Подураев В.Н., Камалов В.С. Физико-химические методы обработки. – М.: Машиностроение, 1973. – 346 с.
  34. Колотырин Я.М., Флорианович Г.М. Аномальные явления при растворении металлов // Итоги науки. Электрохимия. – 1971. – № 7. – С. 5–64.
  35. ГОСТ 1435–99. Прутки, полосы и мотки из инструментальной негелированной стали. Общие технические условия. – Минск: Изд-во стандартов, 1999. – 23 с.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).