Determination of the main parameters of resistance spot welding of Al-5 Mg aluminum alloy

Cover Page

Cite item

Abstract

Introduction. The resistance spot welding (RSW) process has proven to be widely applicable across various industrial sectors, especially for mass production. Typical fields of application include aerospace, automotive, furniture manufacturing, and other industries. However, the RSW process presents certain challenges when welding aluminum and its alloys. Generally, aluminum alloys produce poor welds due to their physical and metallurgical properties such as oxide formation, thermal expansion and contraction, lower weldability, and the formation of intermetallic compounds. This study aims to evaluate the feasibility and mechanical characteristics of RSW joints in Al-5 Mg aluminum alloys. The purpose is to assess the potential of resistance spot welding for aluminum alloys and to determine the influence of key RSW parameters on the microstructure and properties of the weld. Research methods. Al-5 Mg aluminum alloy sheets in as-received condition were used. Spot welding was performed using a stationary resistance spot welding machine MT-4240. Samples for analysis were cut, polished, and subsequently examined under an optical microscope. Hardness measurements were carried out using a microhardness tester along two directions: radially across the nugget and through the sheet thickness, employing a 100 g load. An Instron electromechanical testing machine was utilized for shear testing at a constant traverse speed of 1 mm/min until complete joint failure at room temperature. The nugget diameter was measured on the fracture surface after shear tensile testing. Results and Discussion. Optimal input parameters for welding 2.5 mm thick aluminum sheets were identified, and three output variables were analyzed: tensile strength, joint hardness, and nugget diameter. It was observed that joint strength improved significantly with increased process parameters (welding current and welding period). Nugget diameter showed a clear correlation with input parameters related to current and welding period. An increase in process parameters, i.e., weld cycle time, electrode force, and welding current, led to an increase in nugget size. The ratio of weld strength to base metal strength reached approximately 0.9. It is demonstrated that resistance spot welding of 2.5 mm thick Al-5 Mg aluminum sheets is feasible and can be employed in various industrial applications.

About the authors

Viktor V. Kondratiev

A.P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences; Cherepovets State University

Email: imz@mail.ru
ORCID iD: 0000-0002-7437-2291
SPIN-code: 6927-7394
Scopus Author ID: 56509486000
ResearcherId: A-9010-2013

Ph.D. (Engineering); Senior researcher

Russian Federation, 1A Favorsky str., Irkutsk, 664033, Russian Federation; 5 Lunacharsky pr., Cherepovets, 162600, Russian Federation

Valeriy E. Gozbenko

Irkutsk State Transport University; Angarsk State Technical University

Author for correspondence.
Email: vgozbenko@inbox.ru
ORCID iD: 0000-0001-8394-0054
SPIN-code: 4307-8922
Scopus Author ID: 57192079307

D.Sc. (Engineering), Professor

Russian Federation, 15 Chernyshevskogo str., Irkutsk, 664074, Russian Federation; 60 Tchaikovskogo str., Angarsk, 665835, Russian Federation

Roman V. Kononenko

Irkutsk National Research Technical University

Email: istu_politeh@mail.ru
ORCID iD: 0009-0001-5900-065X
SPIN-code: 2106-3870
Scopus Author ID: 56281057500
ResearcherId: ADE-9780-2022

Ph.D. (Engineering), Associate Professor

Russian Federation, 83 Lermontova str., Irkutsk, 664074, Russian Federation

Marina V. Konstantinova

Irkutsk National Research Technical University

Email: mavikonst@mail.ru
ORCID iD: 0000-0002-8533-0214
SPIN-code: 6788-6241
Scopus Author ID: 57205436485
ResearcherId: JSL-1456-2023

Ph.D. (Chemical), Associate Professor

Russian Federation, 83 Lermontova str., Irkutsk, 664074, Russian Federation

Elena A. Guseva

Irkutsk National Research Technical University

Email: el.guseva@rambler.ru
ORCID iD: 0000-0002-8719-7728
SPIN-code: 4616-4904
Scopus Author ID: 55769467700
ResearcherId: AAY-3936-2020

Ph.D. (Engineering), Associate Professor

Russian Federation, 83 Lermontova str., Irkutsk, 664074, Russian Federation

References

  1. Кочергин К.А. Контактная сварка. – Л.: Машиностроение, 1987. – 240 с.
  2. Орлов Б.Д. Технология и оборудование контактной сварки. – М.: Машиностроение, 1986. – 352 с.
  3. Zhou K., Yao P. Overview of recent advances of process analysis and quality control in resistance spot welding // Mechanical Systems and Signal Processing. – 2019. – Vol. 124. – P. 170–198. – doi: 10.1016/j.ymssp.2019.01.041.
  4. Developments in characterization of resistance spot welding of aluminum / M. Hao, K.A. Osman, D.R. Boomer, C.J. Newton // Welding Journal – Including Welding Research Supplement. – 1996. – Vol. 75 (1). – P. 1–4. – URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-0029777851&origin=inward&txGid=43eb57982320fc23bd6ff9a0a6c0a142 (accessed: 07.08.2025).
  5. A review on resistance spot welding of aluminum alloys / S.M. Manladan, F. Yusof, S. Ramesh, M. Fadzil, Z. Luo, S. Ao // The International Journal of Advanced Manufacturing Technology. – 2017. – Vol. 90. – P. 605–634. – doi: 10.1007/s00170-016-9225-9.
  6. Feasibility study of dissimilar joining of aluminum alloy 5052 to pure copper via thermo-compensated resistance spot welding / Y. Zhang, Y. Li, Z. Luo, T. Yuan, J. Bi, Z.M. Wang, Z.P. Wang, Y.J. Chao // Materials & Design. – 2016. – Vol. 106. – P. 235–246. – doi: 10.1016/j.matdes.2016.05.117.
  7. Zhang W., Xu J. Advanced lightweight materials for automobiles: A review // Materials & Design. – 2022. – Vol. 221. – P. 110994. – doi: 10.1016/j.matdes.2022.110994.
  8. Achieving safety and weight reduction in automobiles with the application of composite material / N. Sateesh, R. Subbiah, B.Ch Nookaraju, D. Siva Nagaraju // Materials Today: Proceedings. – 2022. – Vol. 62. – P. 4469–4472. – doi: 10.1016/j.matpr.2022.04.936.
  9. Materials for automotive lightweighting / A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, U. Vaidya // Annual Review of Materials Research. – 2019. – Vol. 49 (1). – P. 327–359. – doi: 10.1146/annurev-matsci-070218-010134.
  10. Joining aluminum alloy 5052 sheets via novel hybrid resistance spot clinching process / Y. Zhang, H. Shan, Y. Li, J. Guo, Z. Luo, C. Yong Ma // Materials & Design. – 2017. – Vol. 118. – P. 36–43. – doi: 10.1016/j.matdes.2017.01.017.
  11. Ambroziak A., Korzeniowski M. Using resistance spot welding for joining aluminium elements in automotive industry // Archives of Civil and Mechanical Engineering. – 2010. – Vol. 10 (1). – P. 5–13. – doi: 10.1016/S1644-9665(12)60126-5.
  12. Influence of welding parameters on the tensile shear strength of aluminum alloy joint welded by resistance spot welding / R. Qiu, Z. Zhang, K. Zhang, H. Shi, G. Ding // Journal of Materials Engineering and Performance. – 2011. – Vol. 20. – P. 355–358. – doi: 10.1007/s11665-010-9703-4.
  13. Effects of sheet surface conditions on electrode life in resistance welding aluminum / Z. Li, C. Hao, J. Zhang, H. Zhang // Welding Journal. – 2007. – Vol. 86 (4).
  14. Characterization of resistance spot welded joints between aluminum alloy and mild steel with composite electrodes / R. Qiu, J. Li, H. Shi, H. Yu // Journal of Materials Research and Technology. – 2023. – Vol. 24. – P. 1190–1202.
  15. Corrosion behavior in aluminum/galvanized steel resistance spot welds and self-piercing riveting joints in salt spray environment / B. Pan, H. Sun, S.-L. Shang, W. Wen, M. Banu, J.C. Simmer, B.E. Carlson, N. Chen, Z.-K. Liu, Z. Zheng, P. Wang, J. Li // Journal of Manufacturing Processes. – 2021. – Vol. 70. – P. 608–620. – doi: 10.1016/j.jmapro.2021.08.052.
  16. Microstructural and interface geometrical influence on the mechanical fatigue property of aluminum/high-strength steel lap joints using resistance element welding for lightweight vehicles: experimental and computational investigation / S. Baek, G.Y. Go, J.-W. Park, J. Song, H.-c. Lee, S.-J. Lee, S. Lee, C. Chen, M.-S. Kim, D. Kim // Journal of Materials Research and Technology. – 2022. – Vol. 17. – P. 658–678. – doi: 10.1016/j.jmrt.2022.01.041.
  17. Arumugam A., Pramanik A. A review on the recent trends in forming composite joints using spot welding variants // Journal of Composites Science. – 2024. – Vol. 8 (4). – P. 155. – doi: 10.3390/jcs8040155.
  18. Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding / S. Aslanlar, A. Ogur, U. Ozsarac, E. Ilhan // Materials & Design. – 2008. – Vol. 29 (7). – P. 1427–1431. – doi: 10.1016/j.matdes.2007.09.004.
  19. Matsushita M., Ikeda R., Oi K. Development of a new program control setting of welding current and electrode force for single-side resistance spot welding // Welding in the World. – 2015. – Vol. 59. – P. 533–543. – doi: 10.1007/s40194-015-0228-1.
  20. Chang B.H., Zhou Y. Numerical study on the effect of electrode force in small-scale resistance spot welding // Journal of Materials Processing Technology. – 2003. – Vol. 139 (1–3). – P. 635–641. – doi: 10.1016/S0924-0136(03)00613-7.
  21. Podrzaj P., Jerman B., Simoncic S. Poor fit-up condition in resistance spot welding // Journal of Materials Processing Technology. – 2016. – Vol. 230. – P. 21–25. – doi: 10.1016/j.jmatprotec.2015.11.009.
  22. Yu J. New methods of resistance spot welding using reference waveforms of welding power // International Journal of Precision Engineering and Manufacturing. – 2016. – Vol. 17. – P. 1313–1321. – doi: 10.1007/s12541-016-0156-z.
  23. Interfacial microstructure and mechanical property of resistance spot welded joint of high strength steel and aluminium alloy with 4047 AlSi12 interlayer / W. Zhang, D. Sun, L. Han, D. Liu // Materials & Design. – 2014. – Vol. 57. – P. 186–194. – doi: 10.1016/j.matdes.2013.12.045.
  24. Pouranvari M., Marashi S.P.H. Critical review of automotive steels spot welding: process, structure and properties // Science and Technology of Welding and Joining. – 2013. – Vol. 18 (5). – P. 361–403. – doi: 10.1179/1362171813Y.0000000120.
  25. Production of new nanostructures for modification of steels and cast irons / A.I. Karlina, V.V. Kondrat'ev, A.D. Kolosov, A.E. Balanovskiy, N.A. Ivanov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012183. – doi: 10.1088/1757-899X/560/1/012183.
  26. Plasma-arc surface modification of metals in a liquid medium / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'ev, V. Van Huy, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012013. – doi: 10.1088/1757-899X/411/1/012013.
  27. Application of plasma surface quenching to reduce rail side wear / M.V. Konstantinova, A.E. Balanovskiy, V.E. Gozbenko, S.K. Kargapoltsev, A.I. Karlina, M.G. Shtayger, E.A. Guseva, B.O. Kuznetsov // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560 (1). – P. 012146. – doi: 10.1088/1757-899X/560/1/012146.
  28. Capability enhancement of production of activating fluxes for arc welding using ultradispersed products of silicon waste processing / N.N. Ivanchik, A.E. Balanovsky, M.G. Shtayger, I.A. Sysoev, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012035. – doi: 10.1088/1757-899X/411/1/012035.
  29. Change in the properties of rail steels during operation and reutilization of rails / K. Yelemessov, D. Baskanbayeva, N.V. Martyushev, V.Y. Skeeba, V.E. Gozbenko, A.I. Karlina // Metals. – 2023. – Vol. 13. – P. 1043. – doi: 10.3390/met13061043.
  30. Comparative metallographic analysis of the structure of St3 steel after being exposed to different ways of work-hardening / A.E. Balanovsky, M.G. Shtayger, M.V. Grechneva, V.V. Kondrat'ev, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012012. – doi: 10.1088/1757-899X/411/1/012012.
  31. Complex metallographic researches of 110G13L steel after heat treatment / A.E. Balanovsky, M.G. Shtayger, V.V. Kondrat'Ev, S.A. Nebogin, A.I. Karlina // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 411 (1). – P. 012014. – doi: 10.1088/1757-899X/411/1/012014.
  32. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening / A.D. Kolosov, V.E. Gozbenko, M.G. Shtayger, S.K. Kargapoltsev, A.E. Balanovskiy, A.I. Karlina, A.V. Sivtsov, S.A. Nebogin // IOP Conference Series: Materials Science and Engineering. – 2019. – Vol. 560. – P. 012185. – doi: 10.1088/1757-899X/560/1/012185.
  33. An investigation into the behavior of cathode and anode spots in a welding discharge / A.I. Karlina, A.E. Balanovskiy, V.V. Kondratiev, V.V. Romanova, A.G. Batukhtin, Y.I. Karlina // Applied Sciences. – 2024. – Vol. 14 (21). – P. 9774. – doi: 10.3390/app14219774.
  34. Hybrid processing: the impact of mechanical and surface thermal treatment integration onto the machine parts quality / V.Yu. Skeeba, V.V. Ivancivsky, A.V. Kutyshkin, K.A. Parts // IOP Conference Series: Materials Science and Engineering. – 2016. – Vol. 126 (1). – P. 012016. – doi: 10.1088/1757-899x/126/1/012016.
  35. Research on the possibility of lowering the manufacturing accuracy of cycloid transmission wheels with intermediate rolling elements and a free cage / E.A. Efremenkov, N.V. Martyushev, V.Yu. Skeeba, M.V. Grechneva, A.V. Olisov, A.D. Ens // Applied Sciences. – 2022. – Vol. 12 (1). – Vol. 5. – doi: 10.3390/app12010005.
  36. Martyushev N.V., Skeeba V.Yu. The method of quantitative automatic metallographic analysis // Journal of Physics: Conference Series. – 2017. – Vol. 803 (1). – P. 012094. – doi: 10.1088/1742-6596/803/1/012094.
  37. Skeeba V.Yu., Ivancivsky V.V. Reliability of quality forecast for hybrid metal-working machinery // IOP Conference Series: Earth and Environmental Science. – 2018. – Vol. 194 (2). – P. 022037. – doi: 10.1088/1755-1315/194/2/022037.
  38. Defining efficient modes range for plasma spraying coatings / E.A. Zverev, V.Y. Skeeba, P.Y. Skeeba, I.V. Khlebova // IOP Conference Series: Earth and Environmental Science. – 2017. – 87(8). – 082061. – doi: 10.1088/1755-1315/87/8/082061.
  39. Скиба В.Ю. Гибридное технологическое оборудование: повышение эффективности ранних стадий проектирования комплексированных металлообрабатывающих станков // Обработка металлов (технология, оборудование, инструменты). – 2019. – Т. 21, № 2. – C. 62–83. – doi: 10.17212/1994-6309-2019-21.2-62-83.
  40. Исследование процесса автоматического управления сменой полярности тока в условиях гибридной технологии электрохимической обработки коррозионностойких сталей / М.А. Борисов, Д.В. Лобанов, А.С. Янюшкин, В.Ю. Скиба // Обработка металлов (технология, оборудование, инструменты). – 2020. – Т. 22, № 1. – С. 6–15. – doi: 10.17212/1994-6309-2020-22.1-6-15.
  41. Influence of welding regimes on structure and properties of steel 12KH18N10T weld metal in different spatial positions / R.A. Mamadaliev, P.V. Bakhmatov, N.V. Martyushev, V.Y. Skeeba, A.I. Karlina // Metallurgist. – 2022. – Vol. 65 (11–12). – P. 1255–1264. – doi: 10.1007/s11015-022-01271-9.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».