ЭЛЕКТРОИСКРОВОЕ СПЕКАНИЕ СМЕСЕЙ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ И КОМПОЗИТОВ С МЕТАЛЛИЧЕСКИМИ МАТРИЦАМИ: ОСОБЕННОСТИ ФОРМИРОВАНИЯ СТРУКТУРЫ И СВОЙСТВА СПЕЧЕННЫХ МАТЕРИАЛОВ

Обложка

Цитировать

Полный текст

Аннотация

На примерах систем Ti3SiC2-Cu, Fe-Ag, NiO-Ni, Cu2O-Cu и Fe-Al проводится анализ некоторых особенностей поведения смесей порошков металлов и композитов с металлическими матрицами при электроискровом спекании. Обсуждаются физико-химические аспекты формирования контактов между композиционными агломератами, полученными механической обработкой порошковых смесей в высокоэнергетической мельнице. Рассматриваются условия эффективного восстановления оксидных пленок, присутствующих на металлических частицах, в условиях электроискрового спекания. В условиях, традиционно использующихся для консолидации металлических порошков методом электроискрового спекания, удаление оксидов происходит за счет их восстановления углеродом, присутствующим в камере установки электроискрового спекания. Анализируются возможности метода электроискрового спекания для получения композитов с металлическими матрицами, сочетающих различные механизмы упрочнения, а также для получения пористых материалов с высокими значениями открытой пористости.

Об авторах

Дина Владимировна Дудина

Институт гидродинамики им. М.А. Лаврентьева СО РАН; Новосибирский государственный технический университет; Институт химии твердого тела и механохимии СО РАН

Email: dina1807@gmail.com
пр. Лаврентьева, 15, г. Новосибирск, 630090, Россия; пр. К. Маркса, 20, г. Новосибирск, 630073, Россия; ул. Кутателадзе, 18, г. Новосибирск, 630128, Россия

Список литературы

  1. Groza J.R., Zavaliangos A. Nanostructured bulk solids by field activated sintering // Reviews on Advanced Materials Science. - 2003. - Vol. 5. - P. 24-33.
  2. Munir Z.A., Anselmi-Tamburini U., Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method // Journal of Materials Science. - 2006. - Vol. 41, iss. 3. - P. 763-777. - doi: 10.1007/s10853-006-6555-2.
  3. Consolidation/synthesis of materials by electric current activated/assisted sintering / R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao // Materials Science & Engineering: R: Reports. - 2009. - Vol. 63, iss. 4-6. - P. 127-287. - doi: http://dx.doi.org/10.1016/j.mser.2008.09.003.
  4. Spark plasma sintering of metals and metal matrix nanocomposites: a review / N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N.A. Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner // Journal of Nanomaterials. - 2012. - Vol. 2012. - Art. 983470. - 13 p. - doi: http://dx.doi.org/10.1155/2012/983470.
  5. The influence of premolding load on the electrical behavior in the initial stage of electric current activated sintering of carbonyl iron powders / Y. Ye, X. Li, K. Hu, Y. Lai, Y. Li // Journal of Applied Physics. - 2013. - Vol. 113, iss. 21. - P. 214902. - doi: http://dx.doi.org/10.1063/1.4808339.
  6. Aman Y., Garnier V., Djurado E. Pressure-less spark plasma sintering effect on non-conventional necking process during the initial stage of sintering of copper and alumina // Journal of Materials Science. - 2012. - Vol. 47, iss. 15. - P. 5766-5773. - doi: 10.1007/s10853-012-6469-0.
  7. Никулина А.А. Формирование неоднородной структуры железоуглеродистых сплавов спеканием частиц разнородных сталей // Обработка металлов (технология, оборудование, инструменты). - 2016. - № 3 (72). - С. 52-61. - doi: 10.17212/1994-6309-2016-3-52-61.
  8. Bonifacio C.S., Holland T.B., Benthem K. van. Evidence of surface cleaning during electric field assisted sintering // Scripta Materialia. - 2013. - Vol. 69, iss. 11-12. - P. 769-772. - doi: http://dx.doi.org/10.1016/j.scriptamat.2013.08.018.
  9. Oxide reduction effects in SPS processing of Cu atomized powder containing oxide inclusions / R. Collet, S. le Gallet, F. Charlot, S. Lay, J.M. Chaix, F. Bernard // Materials Chemistry and Physics. - 2016. - Vol. 173. - P. 498-507. - doi: http://dx.doi.org/10.1016/j.matchemphys.2016.02.044.
  10. The critical role of heating rate in enabling the removal of surface oxide films during spark plasma sintering of Al-based bulk metallic glass powder / X.P. Li, M. Yan, H. Imai, K. Kondoh, G.B. Schaffer, M. Qian // Journal of Non-Crystalline Solids. - 2013. - Vol. 375. - P. 95-98. - doi: http://dx.doi.org/10.1016/j.jnoncrysol.2013.05.001.
  11. Ti3SiC2-Cu composites by mechanical milling and Spark Plasma Sintering: possible microstructure formation scenarios / D.V. Dudina, V.I. Mali, A.G. Anisimov, N.V. Bulina, M.A. Korchagin, O.I. Lomovsky, I.A. Bataev, V.A. Bataev // Metals & Materials International. - 2013. - Vol. 19, iss. 6. - P. 1235-1241. - doi: 10.1007/s12540-013-6015-x.
  12. Bokhonov B.B., Dudina D.V. Recrystallisation-accompanied phase separation in Ag-Fe and Ag-Ni nanocomposites: a route to structure tailoring of nanoporous silver // RSC Advances. - 2013. - Vol. 3, iss. 31. - P. 12655-12661. - doi: 10.1039/C3RA41377B.
  13. Dudina D.V., Bokhonov B.B. Elimination of oxide films during Spark Plasma Sintering of metallic powders: a case study using partially oxidized nickel // Advanced Powder Technology. - 2017. - Vol. 28, iss. 2. - P. 641-647. - doi: http://dx.doi.org/10.1016/j.apt.2016.12.001.
  14. Dudina D.V., Bokhonov B.B., Mukherjee A K. Formation of aluminum particles with shell morphology during pressureless Spark Plasma Sintering of Fe-Al mixtures: current-related or Kirkendall effect? // Materials. - 2016. - Vol. 9, iss. 5. - P. 375. - doi: 10.3390/ma9050375.
  15. Zhang P., Li S.X., Zhang Z.F. General relationship between strength and hardness // Materials Science & Engineering: A. - 2011. - Vol. 529. - P. 62-73. - doi: http://dx.doi.org/10.1016/j.msea.2011.08.061.
  16. Miller W.S., Humphreys F.J. Strengthening mechanisms in particulate metal matrix composites // Scripta Metallurgica & Materialia. - 1991. - Vol. 25, iss. 1. - P. 33-38. - doi: http://dx.doi.org/10.1016/0956-716X(91)90349-6.
  17. Karczewski K., Stępniowski W.J., Jóźwiak S. Highly-porous FeAl intermetallic foams formed via sintering with Eosin Y as a gas releasing agent // Materials Letters. - 2016. - Vol. 178. - P. 268-271. - doi: http://dx.doi.org/10.1016/j.matlet.2016.05.047.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).