Evaluation of the bars’ multichannel angular pressing scheme and its potential application in practice

Cover Page

Cite item

Abstract

Introduction. Deformation of low-plastic materials requires a high degree of compressive stress. This requirement is implemented, for example, in the process of equal channel angular pressing (ECAP). However, the products obtained by the ECAP method have a cross-section identical to the initial blank, which is one of the disadvantages of this method. The method of nonequal channel angular pressing (NECAP), in contrast to ECAP, makes it possible to change the shape of the initial blank towards closer to the shape of the finished product. However, the well-known NECAP device allows obtaining products only in the form of a thin strip of rectangular cross-section. Well-known devices for multichannel pressing of non-angular type also have a disadvantage — it is implemented only on horizontal type presses, where it is possible to receive long products on the workshop areas. The aim of the work is the evaluation of the bars’; multichannel angular pressing scheme, combining a change in the shape of the initial workpiece in cross-section, as well as the accumulation of a high level of strain during deformation. Research methods: finite element modeling using the DEFORM software module. Results and discussion. The paper considers the scheme of the angular pressing process with the use of a device that allows, for example, to obtain magnesium bars with a diameter of d = 4.1 mm with the number of matrix channels n = 3 from a blank of round cross-section. The container of this device in its lower part has a rectangular groove where the matrix is inserted. Modeling of the process under study using a matrix with the axes of its channels located in the plane of the orthogonal axis of the container and, in the first variant, along the axis of a rectangular groove, and in the second variant, along the radius of the container, allowed us to estimate the distribution of the average stress. It is established that the metal of the blank in both variants of the deformation process is affected by compression stresses at a high level (-1,600 MPa). The assessment of the degree of deformation of the pressed bars allowed us to find out that at the initial stage of both process variants, the maximum strain degree can reach 2.6, and at the steady stage it reaches 5.0. It is established that in the case of the first variant of the matrix, the strain level along the length of the bars is lower than when using the second variant of the matrix. The difference reaches 20 %. By evaluating the distribution of the strain degree in the cross section of the pressed bars near the deformation site, it was found that in the case of the first variant of the matrix, the pressed bars of the first and third channels have an uneven dimensions, and the greater value of the strain degree is on the peripheral part of the rods from the side bordering the central bar. This difference in the strain degree reaches 20 %. When placing the second version of the matrix, this unevenness decreases to 12 %. Thus, in the case of using a matrix with the arrangement of the channel axes along the radius of the container, the strain degree is distributed more evenly compared to the strain degree when using a matrix with the arrangement of the channel axes along the axis of a rectangular groove.

About the authors

Y. N. Loginov

Email: j.n.loginov@urfu.ru
D.Sc. (Engineering), Professor, 1. M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskaya str., Ekaterinburg, 620137, Russian Federation; 2. Ural Federal University named after the first President of Russia B.N. Yeltsin, 19 Mira str., Yekaterinburg, 620002, Russian Federation, j.n.loginov@urfu.ru

Y. V. Zamaraeva

Email: zamaraevajulia@yandex.ru
Ph.D. (Engineering), 1. M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 18 S. Kovalevskaya str., Ekaterinburg, 620137, Russian Federation; 2. JSC “Kamensk Uralsky Metallurgical Works”, 5 Zavodskaya str., Kamensk Uralsky, 623405, Russian Federation, zamaraevajulia@yandex.ru

References

  1. Biswas S., Dhinwal S.S., Suwas S. Room-temperature equal channel angular extrusion of pure magnesium // Acta Materialia. – 2010. – Vol. 58 (9). – P. 3247–3261. – doi: 10.1016/j.actamat.2010.01.051.
  2. Fatemi-Varzaneh S.M., Zarei-Hanzaki A. Accumulative back extrusion (ABE) processing as a novel bulk deformation method // Materials Science and Engineering: A. – 2009. – Vol. 504. – P. 104–106. – doi: 10.1016/j.msea.2008.10.027.
  3. Tailoring texture and refining grain of magnesium alloy by differential speed extrusion process / Q. Yang, B. Jiang, J. He, B. Song, W. Liu, H. Dong, F.S. Pan // Materials Science and Engineering: A. – 2014. – Vol. 612. – P. 187–191. – doi: 10.1016/j.msea.2014.06.045.
  4. Маркушев М.В. К вопросу об эффективности некоторых методов интенсивной пластической деформации, предназначенных для получения объемных наноструктурных материалов // Письма о материалах. – 2011. – Т. 1, № 1. – С. 36–42. – doi: 10.22226/2410-3535-2011-1-36-42.
  5. Minárik P., Král R., Janecek M. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys // Applied Surface Science. – 2013. – Vol. 281. – P. 44?48. – doi: 10.1016/j.apsusc.2012.12.096.
  6. Production, structure, texture, and mechanical properties of severely deformed magnesium / A.Yu. Volkov, O.V. Antonova, B.I. Kamenetskii, I.V. Klyukin, D.A. Komkova, B.D. Antonov // The Physics of Metals and Metallography. – 2016. – Vol. 117. – P. 518?528. – doi: 10.1134/S0031918X16050161.
  7. Naik G.M., Gote G.D., Narendranath S. Microstructural and Hardness evolution of AZ80 alloy after ECAP and post-ECAP processes // Materials Today: Proceedings. – 2018. – Vol. 5, iss. 9 (3). – P. 17763–17768. – doi: 10.1016/j.matpr.2018.06.100.
  8. New schemes of ECAP processes for producing nanostructured bulk metallic materials / G.I. Raab, A.V. Botkin, A.G. Raab, R.Z. Valiev // AIP Conference Proceedings. – 2007. – Vol. 907. – P. 641–646. – doi: 10.1063/1.2729585.
  9. Effect of equal channel angular pressing on structure, texture, mechanical and in-service properties of a biodegradable magnesium alloy / N. Martynenko, E. Lukyanova, V. Serebryany, D. Prosvirnin, V. Terentiev, G. Raab, S. Dobatkin, Y. Estrin // Materials Letters. – 2019. – Vol. 238. – P. 218?221. – doi: 10.1016/j.matlet.2018.12.024.
  10. Jahadi R., Sedighi M., Jahed H. ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy // Materials Science and Engineering: A. – 2014. – Vol. 593. – P. 178?184. – doi: 10.1016/j.msea.2013.11.042.
  11. Патент № 2475320 Российская Федерация, МПК B21C 25/02, B21J 13/02. Устройство для одновременного равноканального углового прессования четырех заготовок: № 2011106083/02: заявл. 17.02.2011: опубл. 20.02.2013, Бюл. № 5 / А.М. Иванов; заявитель и патентообладатель Институт физико-технических проблем Севера им. В.П. Ларионова СО РАН.
  12. Логинов Ю.Н., Буркин С.П. Оценка неравномерности деформаций и давлений при угловом прессовании // Кузнечно-штамповочное производство. Обработка материалов давлением. – 2001. – № 3. – С. 29–34.
  13. Loginov Yu.N., Zamaraeva Yu.V., Komkova D.A. Strains under angular pressing of a strip from a cylindrical billet // Defect and Diffusion Forum. – 2021. – Vol. 410. – P. 80–84. – doi: 10.4028/ href='www.scientific.net/DDF.410.80' target='_blank'>www.scientific.net/DDF.410.80.
  14. Патент № 2050208 Российская Федерация, МПК B21C 25/02. Матричный узел для многоканального прессования: № 4949783/08: заявл. 25.06.1991: опубл. 20.12.1995 / В.Н. Данилин, С.Ф. Ворошилов, А.Г. Шиврин, В.Н. Щерба, И.Н. Потапов, В.П. Алешин, К.В. Рязанов; заявители и патентообладатели: Красноярское металлургическое производственное объединение, Московский институт стали и сплавов.
  15. А. с. № 1292861 СССР, МПК В21С 25/00. Инструмент для обратного многониточного прессования: № 3815518: заявл. 17.10.1984: опубл. 28.02.1987, Бюл. № 8 / Б.Е. Хайкин, Ю.Н. Логинов, В.И. Шмелев, В.П. Алешин.
  16. Патент № 2278758 Российская Федерация, МПК B21C 35/02. Устройство для создания натяжения при прессовании металлов: № 2005105190/02: заявл. 24.02.2005: опубл. 27.06.2006, Бюл. № 18 / С.П. Буркин, Ю.Н. Логинов; заявитель и патентообладатель Уральский государственный технический университет – УПИ.
  17. Логинов Ю.Н., Волков А.Ю., Каменецкий Б.И. Анализ схемы неравноканального углового выдавливания применительно к получению листового магния в холодном состоянии // Известия вузов. Цветная металлургия. – 2019. – № 1. – С. 59–66. –doi: 10.17073/0021-3438-2019-1-59-66.
  18. Joost W.J., Krajewski P.E. Towards magnesium alloys for high-volume automotive applications // Scripta Materialia. – 2017. – Vol. 128. – P. 107–112. – doi: 10.1016/j.scriptamat.2016.07.035.
  19. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits / J. Wang, Y. Wu, H. Li, Y. Liu, X. Bai, W. Wingho Chau, Y. Zheng, L. Qin // Biomaterials. – 2018. – Vol. 157. – P. 86–97. – doi: 10.1016/j.biomaterials.2017.12.007.
  20. Treatment of trauma-induced femoral head necrosis with biodegradable pure Mg screw-fixed pedicle iliac bone flap / L. Chen, Z. Lin, M. Wang, W. Huang, J. Ke, D. Zhao, Q. Yin, Y. Zhang // Journal of Orthopaedic Translation. – 2019. – Vol. 17. – P. 133–137. – doi: 10.1016/j.jot.2019.01.004.
  21. A new type of degradable setting ball for fracturing packers / Y. Zhang, L. Yu, Y. Ren, D. Yang, D. Feng // Well Testing. – 2018. – Vol. 27 (2). – P. 53–58. – doi: 10.19680/j.cnki.1004-4388.2018.02.009.
  22. Effects of Fe concentration on microstructure and corrosion of Mg-6Al-1Zn-xFe alloys for fracturing balls applications / C. Zhang, L. Wu, G. Huang, L. Chen, D. Xia, B. Jiang, A. Atrens, F. Pan // Journal of Materials Science and Technology. – 2019. – Vol. 35 (9). – P. 2086–2098. – doi: 10.1016/j.jmst.2019.04.012.
  23. Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet / B. Song, R. Xin, Y. Liang, G. Chen, Q. Liu // Materials Science and Engineering: A. – 2014. – Vol. 614. – P. 106–115. – doi: 10.1016/j.msea.2014.07.026.
  24. Nugmanov D.R., Sitdikov O.Sh., Markushev M.V. Structure of magnesium alloy MA14 after multistep isothermal forging and subsequent isothermal rolling // The Physics of Metals and Metallography. – 2015. – Vol. 116. – P. 993–1001. – doi: 10.1134/S0031918X15080116.
  25. Cepeda-Jiménez С.М., Molina-Aldareguia J.M., Pérez-Prado M.T. Origin of the twinning to slip transition with grain size refinement, with decreasing strain rate and with increasing temperature in magnesium // Acta Materialia. – 2015. – Vol. 88. – P. 232–244. – doi: 10.1016/j.actamat.2015.01.032.
  26. Fundamentals and advances in magnesium alloy corrosion / M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, L.G. Johansson // Progress in Materials Science. – 2017. – Vol. 89. – P. 92–193. – doi: 10.1016/j.pmatsci.2017.04.011.
  27. Volkov A.Yu., Kliukin I.V. Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing // Materials Science and Engineering: A. – 2015. – Vol. 624. – P. 56–60. – doi: 10.1016/j.msea.2014.12.104.
  28. Каменецкий Б.И., Логинов Ю.Н. Угловое прессование листовой заготовки магния из круглого слитка // Цветные металлы. – 2018. – № 9. – С. 77–81. – doi: 10.17580/tsm.2018.09.12.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).