Regional anesthesia in coronary artery bypass grafting: a narrative review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Coronary artery bypass grafting (CABG) is one of the most frequently performed procedures in modern cardiac surgery because it is indicated in most patients with coronary artery disease. Currently, there are no standard methods for regional anesthesia in cardiac surgery. The purpose of this review was to describe the available techniques for regional anesthesia in post-CABG. Studies published in the databases PubMed, The Cochrane Library, Google Scholar, Russian science citation index were included. Techniques reported in the literature were local blockade of the postoperative wound with local anesthetics in the anteromedial chest wall (parasternal-intercostal plane blocks), anterolateral chest wall (interpectoral plane blocks, serratus anterior plane block), and posterolateral chest wall (erector spinae plane block, thoracic paravertebral block, retrolaminar block, rhomboid intercostal block). Numerous studies demonstrate that the use of regional anesthesia as a component of multimodal anesthesia after coronary artery bypass grafting significantly improves pain relief. Blockade of the peripheral nerves of the chest wall under ultrasound guidance can be considered not only as an alternative to epidural anesthesia when not indicated or not feasible. It also contributes to early tracheal extubation, reduced duration of mechanical ventilation, adequate pain control, and a decrease in the need for narcotic analgesics, reduced postoperative nausea and vomiting, and reduced length of stay in the intensive care unit. Further research is needed to determine the optimal technique for performing interfascial blockades of the chest wall post-CABG, which would require data on the effectiveness, safety, and dosing regimen for each specific blockade.

About the authors

Viktor A. Koriachkin

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: vakoryachkin@mail.ru
ORCID iD: 0000-0002-3400-8989
SPIN-code: 6101-0578

MD, Dr. Sci. (Med.), Professor

Russian Federation, St. Petersburg

Maksim A. Dzhopua

Lapino Clinical Hospital

Email: Dzhopua.M.A@yandex.ru
ORCID iD: 0000-0002-9950-2814
SPIN-code: 3945-6170

anesthesiologist-resuscitator

Russian Federation, Lapino

Beka S. Ezugbaia

Ilyinskaya Hospital

Email: ezugbaia.b.s@gmail.com
ORCID iD: 0000-0002-0271-4643
SPIN-code: 1713-7653

MD, Cand. Sci. (Med.), anesthesiologist-resuscitator

Russian Federation, Krasnogorsk

Vaagn A. Avetisian

Ilyinskaya Hospital

Email: vaagnavetisian@gmail.com
ORCID iD: 0000-0001-6555-7369
SPIN-code: 4943-9611

anesthesiologist-resuscitator

Russian Federation, Krasnogorsk

Dmitriy V. Zabolotskiy

Saint Petersburg State Pediatric Medical University

Email: zdv4330303@gmail.com
ORCID iD: 0000-0002-6127-0798
SPIN-code: 6726-2571

MD, Dr. Sci. (Med.), Professor

Russian Federation, St. Petersburg

Vladimir A. Evgrafov

Saint Petersburg State Pediatric Medical University

Email: evgrafov-spb@mail.ru
ORCID iD: 0000-0001-6545-2065
SPIN-code: 6322-3961

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, St. Petersburg

References

  1. Likosky DS, Baker RA, Newland RF, et al. International Consortium for Evidence-Based Perfusion, the PERForm Registry, the Australian and New Zealand Collaborative Perfusion Registry (ANZCPR), and the Michigan Society of Thoracic and Cardiovascular Surgeons Quality Collaborative. Is Conventional Bypass for Coronary Artery Bypass Graft Surgery a Misnomer? J Extra Corpor Technol. 2018;50(4):225–230.
  2. Elbadawi A, Hamed M, Elgendy IY, et al. Outcomes of Reoperative Coronary Artery Bypass Graft Surgery in the United States. J Am Heart Assoc. 2020;9(15):e016282. doi: 10.1161/JAHA.120.016282
  3. Melly L, Torregrossa G, Lee T, et al. Fifty years of coronary artery bypass grafting. J Thorac Dis. 2018;10(3):1960–1967. doi: 10.21037/jtd.2018.02.43
  4. Bokeriya LA, Milievskaya EB, Pryanishnikov VV, et al. Serdechno-sosudistaya khirurgiya-2021. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya. Moscow: FGBU «NMITsSSKh im. A.N. Bakuleva» MZ RF; 2022. (In Russ).
  5. Bjørnnes AK, Rustøen T, Lie I, et al. Pain characteristics and analgesic intake before and following cardiac surgery. Eur J Cardiovasc Nurs. 2016;15(1):47–54. doi: 10.1177/1474515114550441
  6. Lahtinen P, Kokki H, Hynynen M. Pain after cardiac surgery: a prospective cohort study of 1-year incidence and intensity. Anesthesiology. 2006;105(4):794–800. doi: 10.1097/00000542-200610000-00026
  7. Echeverria-Villalobos M, Stoicea N, Todeschini AB, et al. Enhanced Recovery After Surgery (ERAS): A Perspective Review of Postoperative Pain Management Under ERAS Pathways and Its Role on Opioid Crisis in the United States. Clin J Pain. 2020;36(3):219–226. doi: 10.1097/AJP.0000000000000792
  8. Guimarães-Pereira L, Reis P, Abelha F, et al. Persistent postoperative pain after cardiac surgery: a systematic review with meta-analysis regarding incidence and pain intensity. Pain. 2017;158(10):1869–1885. doi: 10.1097/j.pain.0000000000000997
  9. Bae J, Shin S. Factors Related to Persistent Postoperative Pain after Cardiac Surgery: A Systematic Review and Meta-Analysis. J Korean Acad Nurs. 2020;50(2):159–177. (In Korean). doi: 10.4040/jkan.2020.50.2.159
  10. Zubrzycki M, Liebold A, Skrabal C, et al. Assessment and pathophysiology of pain in cardiac surgery. J Pain Res. 2018;11:1599–1611. doi: 10.2147/JPR.S162067
  11. He Q, Wang W, Zhu S, et al. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: an observational study. Crit Care. 2021;25(1):44. doi: 10.1186/s13054-021-03484-x
  12. Liu J, Zhang S, Chen J, et al. Risk factors for ventilator-associated events: A prospective cohort study. Am J Infect Control. 2019;47(7):744–749. doi: 10.1016/j.ajic.2018.09.032
  13. Hargrave J, Grant MC, Kolarczyk L, et al. An Expert Review of Chest Wall Fascial Plane Blocks for Cardiac Surgery. J Cardiothorac Vasc Anesth. 2023;37(2):279–290. doi: 10.1053/j.jvca.2022.10.026
  14. Svirskiy DA, Antipin EE, Paromov KV, et al. Paraxial spinal nerve block. Russian Journal of Anesthesiology and Reanimatology. 2021;4:128–135. (In Russ). doi: 10.17116/anaesthesiology2021041128
  15. Kelava M, Alfirevic A, Bustamante S, et al. Regional Anesthesia in Cardiac Surgery: An Overview of Fascial Plane Chest Wall Blocks. Anesth Analg. 2020;131(1):127–135. doi: 10.1213/ANE.0000000000004682
  16. Raj N. Regional anesthesia for sternotomy and bypass-Beyond the epidural. Paediatr Anaesth. 2019;29(5):519–529. doi: 10.1111/pan.13626
  17. Chakravarthy M. Regional analgesia in cardiothoracic surgery: A changing paradigm toward opioid-free anesthesia? Ann Card Anaesth. 2018;21(3):225–227. doi: 10.4103/aca.ACA_56_18
  18. Zhou K, Li D, Song G. Comparison of regional anesthetic techniques for postoperative analgesia after adult cardiac surgery: bayesian network meta-analysis. Front Cardiovasc Med. 2023;10:1078756. doi: 10.3389/fcvm.2023.1078756
  19. Paromov KV, Svirskiy DA, Kirov MYu. Regional anesthesia in cardiac surgery: is there a choice? Russian Journal of Anesthesiology and Reanimatology. 2021;6:7581. (In Russ). doi: 10.17116/anaesthesiology202106175
  20. Warfield DJ, Barre S, Adhikary SD. Current understanding of the fascial plane blocks for analgesia of the chest wall: techniques and indications update for 2020. Curr Opin Anaesthesiol. 2020;33(5):692–697. doi: 10.1097/ACO.0000000000000909
  21. El Shora HA, El Beleehy AA, Abdelwahab AA, et al. Bilateral paravertebral block versus thoracic epidural analgesia for pain control post-cardiac surgery: a randomized controlled trial. Thorac Cardiovasc Surg. 2020;68(5):410–416. doi: 10.1055/s-0038-1668496
  22. Smith LM, Barrington MJ; St. Vincent,s Hospital, Melbourne. Ultrasound-guided blocks for cardiovascular surgery: which block for which patient? Curr Opin Anaesthesiol. 2020;33(1):64–70. doi: 10.1097/ACO.0000000000000818
  23. Harbell MW, Langley NR, Seamans DP, et al. Deep parasternal intercostal plane nerve block: an anatomical study. Reg Anesth Pain Med. 2023:rapm-2023-104716. doi: 10.1136/rapm-2023-104716
  24. Kumari P, Kumar A, Sinha C, et al. Continuous bilateral transversus thoracis muscle plane block in median sternotomy. Saudi J Anaesth. 2022;16(2):255–256. doi: 10.4103/sja.sja_825_21
  25. Xie C, Ran G, Chen D, Lu Y. A narrative review of ultrasound-guided serratus anterior plane block. Ann Palliat Med. 2021;10(1):700–706. doi: 10.21037/apm-20-1542
  26. Chin KJ, El-Boghdadly K. Mechanisms of action of the erector spinae plane (ESP) block: a narrative review. Can J Anaesth. 2021;68(3):387–408. doi: 10.1007/s12630-020-01875-2
  27. Chin KJ, Pawa A, Forero M, Adhikary S. Ultrasound-guided fascial plane blocks of the thorax: pectoral I and II, serratus anterior plane, and erector spinae plane blocks. Adv Anesth. 2019;37:187–205. doi: 10.1016/j.aan.2019.08.007
  28. Vinokurovа AA, Rudnov VA, Dubrovin SG. Analgesia of post-operative wound with local anesthetics. Messenger of Anesthesiology and Resuscitation. 2019;16(4):47–55. (In Russ). doi: 10.21292/2078-5658-2019-16-4-47-55
  29. Dowling R, Thielmeier K, Ghaly A, et al. Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial. J Thorac Cardiovasc Surg. 2003;126(5):1271–1278. doi: 10.1016/s0022-5223(03)00585-3
  30. White PF, Rawal S, Latham P, et al. Use of a continuous local anesthetic infusion for pain management after median sternotomy. Anesthesiology. 2003;99(4):918–923. doi: 10.1097/00000542-200310000-00026
  31. Mijovski G, Podbregar M, Kšela J, et al. Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: a randomized, double-blind, placebo-controlled trial. BMC Anesthesiol. 2020;20(1):172. doi: 10.1186/s12871-020-01093-9
  32. Agarwal S, Nuttall GA, Johnson ME, et al. A prospective, randomized, blinded study of continuous ropivacaine infusion in the median sternotomy incision following cardiac surgery. Reg Anesth Pain Med. 2013;38(2):145–150. doi: 10.1097/AAP.0b013e318281a348
  33. Sepolvere G, Coppolino F, Tedesco M, Cristiano L. Ultrasound-guided parasternal blocks: techniques, clinical indications and future prospects. Minerva Anestesiol. 2021;87(12):1338–1346. doi: 10.23736/S0375-9393.21.15599-3
  34. de la Torre PA, García PD, Alvarez SL, et al. A novel ultrasound-guided block: a promising alternative for breast analgesia. Aesthet Surg J. 2014;34(1):198–200. doi: 10.1177/1090820X13515902
  35. Caruso TJ, Lawrence K, Tsui BCH. Regional anesthesia for cardiac surgery. Curr Opin Anaesthesiol. 2019;32(5):674–682. doi: 10.1097/ACO.0000000000000769
  36. Liu V, Mariano ER, Prabhakar C. Pecto-intercostal Fascial Block for Acute Poststernotomy Pain: A Case Report. A A Pract. 2018;10(12):319–322. doi: 10.1213/XAA.0000000000000697
  37. Zhang Y, Min J, Chen S. Continuous Pecto-Intercostal Fascial Block Provides Effective Analgesia in Patients Undergoing Open Cardiac Surgery: A Randomized Controlled Trial. Pain Med. 2022;23(3):440–447. doi: 10.1093/pm/pnab291
  38. Bloc S, Perot BP, Gibert H, et al. Efficacy of parasternal block to decrease intraoperative opioid use in coronary artery bypass surgery via sternotomy: a randomized controlled trial. Reg Anesth Pain Med. 2021;46(8):671–678. doi: 10.1136/rapm-2020-102207
  39. Hamed MA, Abdelhady MA, Hassan AASM, Boules ML. The Analgesic Effect of Ultrasound-guided Bilateral Pectointercostal Fascial Plane Block on Sternal Wound Pain After Open Heart Surgeries: A Randomized Controlled Study. Clin J Pain. 2022;38(4):279–284. doi: 10.1097/AJP.0000000000001022
  40. Khera T, Murugappan KR, Leibowitz A, et al. Ultrasound-Guided Pecto-Intercostal Fascial Block for Postoperative Pain Management in Cardiac Surgery: A Prospective, Randomized, Placebo-Controlled Trial. J Cardiothorac Vasc Anesth. 2021;35(3):896–903. doi: 10.1053/j.jvca.2020.07.058
  41. Ueshima H, Kitamura A. Blocking of Multiple Anterior Branches of Intercostal Nerves (Th2-6) Using a Transversus Thoracic Muscle Plane Block. Reg Anesth Pain Med. 2015;40(4):388. doi: 10.1097/AAP.0000000000000245
  42. Zhang Y, Chen S, Gong H, Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020;34(9):2430–2434. doi: 10.1053/j.jvca.2020.02.005
  43. Abdelbaser I, Mageed NA. Safety of Ultrasound-Guided Transversus Thoracis Plane Block in Pediatric Cardiac Surgery: A Retrospective Cohort Study. J Cardiothorac Vasc Anesth. 2022;36(8 Pt B):2870–2875. doi: 10.1053/j.jvca.2021.12.006
  44. Sepolvere G, Tognù A, Tedesco M, et al. Avoiding the Internal Mammary Artery During Parasternal Blocks: Ultrasound Identification and Technique Considerations. J Cardiothorac Vasc Anesth. 2021;35(6):1594–1160. doi: 10.1053/j.jvca.2020.11.007
  45. Aydin ME, Ahiskalioglu A, Ates I, et al. Efficacy of Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Postoperative Opioid Consumption After Cardiac Surgery: A Prospective, Randomized, Double-Blind Study. J Cardiothorac Vasc Anesth. 2020;34(11):2996–3003. doi: 10.1053/j.jvca.2020.06.044
  46. Zhang Y, Li X, Chen S. Bilateral transversus thoracis muscle plane block provides effective analgesia and enhances recovery after open cardiac surgery. J Card Surg. 2021;36(8):2818–2823. doi: 10.1111/jocs.15666
  47. Abdelbaser II, Mageed NA. Analgesic efficacy of ultrasound guided bilateral transversus thoracis muscle plane block in pediatric cardiac surgery: a randomized, double-blind, controlled study. J Clin Anesth. 2020;67:110002. doi: 10.1016/j.jclinane.2020.110002
  48. Zhang Y, Chen S, Gong H, Zhan B. Efficacy of Bilateral Transversus Thoracis Muscle Plane Block in Pediatric Patients Undergoing Open Cardiac Surgery. J Cardiothorac Vasc Anesth. 2020;34(9):2430–2434. doi: 10.1053/j.jvca.2020.02.005
  49. Kaya C, Dost B, Dokmeci O, et al. Comparison of Ultrasound-Guided Pecto-intercostal Fascial Block and Transversus Thoracic Muscle Plane Block for Acute Poststernotomy Pain Management After Cardiac Surgery: A Prospective, Randomized, Double-Blind Pilot Study. J Cardiothorac Vasc Anesth. 2022;36(8 Pt A):2313–2321. doi: 10.1053/j.jvca.2021.09.041
  50. Ueshima H, Kitamura A. Clinical experiences of ultrasound-guided transversus thoracic muscle plane block: a clinical experience. J Clin Anesth. 2015;27(5):428–489. doi: 10.1016/j.jclinane.2015.03.040
  51. El-Boghdadly K, Wolmarans M, Stengel AD, Albrecht E, Chin KJ, Elsharkawy H, et al. Standardizing nomenclature in regional anesthesia: an ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks. Reg Anesth Pain Med. 2021;46(7):571–580. doi: 10.1136/rapm-2020-102451
  52. Shokri H, Ali I, Kasem AA. Evaluation of the Analgesic Efficacy of Bilateral Ultrasound-Guided Transversus Thoracic Muscle Plane Block on Post-Sternotomy Pain: A Randomized Controlled Trial. Local Reg Anesth. 2021;14:145–152. doi: 10.2147/LRA.S338685
  53. Zhang J, Luo F, Zhang X, Xue Y. Ultrasound-Guided Continuous Parasternal Intercostal Block Relieves Postoperative Pain After Open Cardiac Surgery: A Case Series. J Cardiothorac Vasc Anesth. 2022;36(7):2051–2054. doi: 10.1053/j.jvca.2021.05.028
  54. Blanco R, Fajardo M, Parras Maldonado T. Ultrasound description of Pecs II (modified Pecs I): a novel approach to breast surgery. Rev Esp Anestesiol Reanim. 2012;59(9):470–475. doi: 10.1016/j.redar.2012.07.003
  55. Blanco R. The ‘pecs block’: a novel technique for providing analgesia after breast surgery. Anaesthesia. 2011;66(9):847–848. doi: 10.1111/j.1365-2044.2011.06838.x
  56. Kamal F, Abd El-Rahman A, Hassan RM, Helmy AF. Efficacy of bilateral PECS II block in postoperative analgesia for ultrafast track pediatric cardiac anesthesia. Egypt J Anaesth. 2022;38:150–157. doi: 10.1080/11101849.2022.2043523
  57. Kumar KN, Kalyane RN, Singh NG, et al. Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery. Ann Card Anaesth. 2018;21(3):333–338. doi: 10.4103/aca.ACA_15_18
  58. Ahiskalioglu A, Yayik AM, Demir U, et al.Preemptive Analgesic Efficacy of the Ultrasound-Guided Bilateral Superficial Serratus Plane Block on Postoperative Pain in Breast Reduction Surgery: A Prospective Randomized Controlled Study. Aesthetic Plast Surg. 2020;44(1):37–44. doi: 10.1007/s00266-019-01542-y
  59. Blanco R, Parras T, McDonnell JG, Prats-Galino A. Serratus plane block: a novel ultrasound-guided thoracic wall nerve block. Anaesthesia. 2013;68(11):1107–1113. doi: 10.1111/anae.12344
  60. Qiu L, Bu X, Shen J, et al. Observation of the analgesic effect of superficial or deep anterior serratus plane block on patients undergoing thoracoscopic lobectomy. Medicine (Baltimore). 2021;100(3):e24352. doi: 10.1097/MD.0000000000024352
  61. Liu X, Song T, Xu HY, et al. The serratus anterior plane block for analgesia after thoracic surgery: A meta-analysis of randomized controlled trails. Medicine (Baltimore). 2020;99(21):e20286. doi: 10.1097/MD.0000000000020286
  62. Kaushal B, Chauhan S, Saini K, et al. Comparison of the Efficacy of Ultrasound-Guided Serratus Anterior Plane Block, Pectoral Nerves II Block, and Intercostal Nerve Block for the Management of Postoperative Thoracotomy Pain After Pediatric Cardiac Surgery. J Cardiothorac Vasc Anesth. 2019;33(2):418–425. doi: 10.1053/j.jvca.2018.08.209
  63. Guerra-Londono CE, Privorotskiy A, Cozowicz C, et al. Assessment of Intercostal Nerve Block Analgesia for Thoracic Surgery: A Systematic Review and Meta-analysis. JAMA Netw Open. 2021;4(11):e2133394. doi: 10.1001/jamanetworkopen.2021.33394
  64. Kaushal B, Magoon R, Kaushal B, et al. A randomised controlled comparison of serratus anterior plane, pectoral nerves and intercostal nerve block for post-thoracotomy analgesia in adult cardiac surgery. Indian J Anaesth. 2020;64(12):1018–1024. doi: 10.4103/ija.IJA_566_20
  65. Safin RR, Koriachkin VA, Zabolotskii DV. Forgotten pioneers of erector spinae plane block: historical digression. Regional Anesthesia and Acute Pain Management. 2023;17(2):89–99. (In Russ). doi: 10.17816/RA375334
  66. Forero M, Adhikary SD, Lopez H, et al. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg Anesth Pain Med. 2016;41(5):621–627. doi: 10.1097/AAP.0000000000000451
  67. Kot P, Rodriguez P, Granell M, et al. The erector spinae plane block: a narrative review. Korean J Anesthesiol. 2019;72(3):209–220. doi: 10.4097/kja.d.19.00012
  68. Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector Spinae Plane Block Versus Retrolaminar Block: A Magnetic Resonance Imaging and Anatomical Study. Reg Anesth Pain Med. 2018;43(7):756–762. doi: 10.1097/AAP.0000000000000798
  69. Athar M, Parveen S, Yadav M, et al. A Randomized Double-Blind Controlled Trial to Assess the Efficacy of Ultrasound-Guided Erector Spinae Plane Block in Cardiac Surgery. J Cardiothorac Vasc Anesth. 2021;35(12):3574–3580. doi: 10.1053/j.jvca.2021.03.009
  70. Krishna SN, Chauhan S, Bhoi D, et al. Bilateral Erector Spinae Plane Block for Acute Post-Surgical Pain in Adult Cardiac Surgical Patients: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth. 2019;33(2):368–375. doi: 10.1053/j.jvca.2018.05.050
  71. Wasfy SF, Kamhawy GA, Omar AH, Abd El Aziz HF. Bilateral continuous erector spinae block versus multimodal intravenous analgesia in coronary bypass surgery. A randomized trial. Egypt J Anaesth. 2021;37:152–158. doi: 10.1080/11101849.2021.1904548
  72. Ali Gado A, Alsadek WM, Ali H, Ismail AA. Erector Spinae Plane Block for Children Undergoing Cardiac Surgeries via Sternotomy: A Randomized Controlled Trial. Anesth Pain Med. 2022;12(2):e123723. doi: 10.5812/aapm-123723
  73. Macaire P, Ho N, Nguyen V, et al. Bilateral ultrasound-guided thoracic erector spinae plane blocks using a programmed intermittent bolus improve opioid-sparing postoperative analgesia in pediatric patients after open cardiac surgery: a randomized, double-blind, placebo-controlled trial. Reg Anesth Pain Med. 2020;45(10):805–812. doi: 10.1136/rapm-2020-101496
  74. Yeung JH, Gates S, Naidu BV, et al. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev. 2016;2(2):CD009121. doi: 10.1002/14651858.CD009121
  75. Baidya DK, Khanna P, Maitra S. Analgesic efficacy and safety of thoracic paravertebral and epidural analgesia for thoracic surgery: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2014;18(5):626–635. doi: 10.1093/icvts/ivt551
  76. Scarfe AJ, Schuhmann-Hingel S, Duncan JK, et al. Continuous paravertebral block for post-cardiothoracic surgery analgesia: a systematic review and meta-analysis. Eur J Cardiothorac Surg. 2016;50(6):1010–1018. doi: 10.1093/ejcts/ezw168
  77. Sun L, Li Q, Wang Q, et al. Bilateral thoracic paravertebral block combined with general anesthesia vs. general anesthesia for patients undergoing off-pump coronary artery bypass grafting: a feasibility study. BMC Anesthesiol. 2019;19(1):101. doi: 10.1186/s12871-019-0768-9
  78. Karmakar MK, Greengrass RA, Latmore M, Levin M. Thoracic and lumbar paravertebral block — landmarks and nerve stimulator technique [Internet]. NYSORA; 2020 [cited 2023 Sep 30]. Available from: https://www.nysora.com/regional-anesthesia-for-specific-surgical-procedures/abdomen/thoracic-lumbar-paravertebral-block/
  79. Voscopoulos C, Palaniappan D, Zeballos J, et al. The ultrasound-guided retrolaminar block. Can J Anaesth. 2013;60(9):888–895. doi: 10.1007/s12630-013-9983-x
  80. Abdelbaser I, Mageed NA, Elfayoumy SI, et al. The effect of ultrasound-guided bilateral thoracic retrolaminar block on analgesia after pediatric open cardiac surgery: a randomized controlled double-blind study. Korean J Anesthesiol. 2022;75(3):276–282. doi: 10.4097/kja.21466
  81. Elsharkawy H, Saifullah T, Kolli S, Drake R. Rhomboid intercostal block. Anaesthesia. 2016;71(7):856–857. doi: 10.1111/anae.13498
  82. Elsharkawy H, Maniker R, Bolash R, et al. Rhomboid Intercostal and Subserratus Plane Block: A Cadaveric and Clinical Evaluation. Reg Anesth Pain Med. 2018;43(7):745–751. doi: 10.1097/AAP.0000000000000824

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of local anesthesia of the postoperative wound, parasternal intercostal blockades and blockade of the transverse pectoralis muscle plane block (according to J. Zhang et al., 2022 [53], published with modifications).

Download (303KB)
3. Fig. 2. Anterolateral thoracic blockades. Note. SAR — blockade of the anterior serrated plane block, PEC I — interfascial blockade of the pectoral nerves between the pectoralis major and minor muscle. The combination of PEC I block and superficial SAR blockade is PEC II block (according to M. Kelava et al., 2022 [15] published with modifications).

Download (259KB)
4. Fig. 3. Posterolateral thoracic blockade group. Note. RLB — retrolaminar blockade, ESP-блок — erector spinae plane block, PI-блок — paraspinal intercostal blockade (according to M. Kelava et al., 2022 [15], published with modifications).

Download (202KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies