Preliminary outcomes of the COVID-19 pandemic: a new chronic pain profile

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In summing up the preliminary results of the COVID-19 pandemic that has not yet ended, modern research pays much attention to the so-called “post-COVID” syndrome, which includes the long-term consequences of the disease. In English, symptoms are reported as “long COVID”, “post-acute COVID”, or “chronic post-COVID syndrome” and are described as symptoms of fatigue, respiratory disorders, memory, and sleep problems. Symptoms such as muscle pain and decreased endurance when performing habitual physical exertion are mentioned much less often. Meanwhile, among the complaints of those who have been ill, this symptom is present quite often, reducing the quality of life and tolerability of normal physical exertion. This review aimed to provide an in-depth study of a new type of the chronic myofascial pain syndrome after COVID-19, i.e., the frequency of occurrence, causes of the development, and pathophysiology of chronic pain syndrome associated with COVID-19 and manifested as fibromyalgia of various localizations. To answer the questions posed, the authors searched for information in four electronic databases. The key search terms used were “COVID-19”, “long COVID,” and “signs and symptoms of pain syndrome”. A review of current literature data has shown that close study and dynamic monitoring of patients who had COVID-19 can contribute to further deciphering the pathophysiological mechanisms of the development of its long-term consequences and provide answers to questions on the prevention and treatment of chronic pain syndrome in this patient cohort.

About the authors

Natalia P. Shen

Tyumen State Medical University; Regional Clinical Hospital No. 1, Tyumen

Author for correspondence.
Email: nataliashen@rambler.ru
ORCID iD: 0000-0002-3256-0374
SPIN-code: 2963-7338

MD, Dr. Sci. (Med.), professor
Russian Federation, Tyumen; Tyumen

Vladimir V. Logvinenko

Tyumen State Medical University; Hospital for War Veterans, Tyumen

Email: log-vi@yandex.ru
ORCID iD: 0000-0002-1230-7355
SPIN-code: 9369-0383

MD, Cand. Sci. (Med.)

Russian Federation, Tyumen; Tyumen

Svetlana B. Tsiryatieva

Tyumen State Medical University; Regional Clinical Hospital No. 1, Tyumen

Email: s_b_c@mail.ru
ORCID iD: 0000-0002-3881-2851
SPIN-code: 2424-2070

MD, Dr. Sci. (Med.)
Russian Federation, Tyumen; Tyumen

Valentin I. Osin

Tyumen State Medical University; Regional Clinical Hospital No. 1, Tyumen

Email: osinvalentin9610@gmail.com
ORCID iD: 0000-0003-4383-0816

anesthesiologist-resuscitator

Tyumen; Tyumen

Aleksander A. Masserov

Tyumen State Medical University; Regional Clinical Hospital No. 1, Tyumen

Email: amassyorov@yandex.ru
ORCID iD: 0000-0002-6042-2606
SPIN-code: 6148-2797

anesthesiologist-resuscitator

Russian Federation, Tyumen; Tyumen

References

  1. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med. 2021;27(9):895–906. doi: 10.1016/j.molmed.2021.06.002
  2. Wadehra S. COVID Long Haulers and the New Chronic Pain Profile. 2022;22(1). Accessed: November 4, 2022. Available from: https://www.practicalpainmanagement.com/pain/other/covid-long-haulers-new-chronic-pain-profile.
  3. Fiala K, Martens J, Abd-Elsayed A. Post-COVID Pain Syndromes. Curr Pain Headache Rep. 2022;26(5):379–383. doi: 10.1007/s11916-022-01038-6
  4. Soares F, Kubota GT, Fernandes AM, et.al. Prevalence and characteristics of new-onset pain in COVID-19 survivours, a controlled study. Eur J Pain. 2021;25(6):1342–1354. doi: 10.1002/ejp.1755
  5. Fernández-de-Las-Peñas C, de-la-Llave-Rincón AI, Ortega-Santiago R, et al. Prevalence and risk factors of musculoskeletal pain symptoms as long-term post-COVID sequelae in hospitalized COVID-19 survivors: a multicenter study. Pain. 2022;163(9):e989–e996. doi: 10.1097/j.pain.0000000000002564
  6. Murat S, Dogruoz Karatekin B, Icagasioglu A, et al. Clinical presentations of pain in patients with COVID-19 infection. Ir J Med Sci. 2021;190(3):913–917. doi: 10.1007/s11845-020-02433-x
  7. Magdy R, Hussein M, Ragaie C, et al. Characteristics of headache attributed to COVID-19 infection and predictors of its frequency and intensity: A cross sectional study. Cephalalgia. 2020;40(13):1422–1431. doi: 10.1177/0333102420965140
  8. Uygun Ö, Ertaş M, Ekizoğlu E, et al. Headache characteristics in COVID-19 pandemic-a survey study. J Headache Pain. 2020;21(1):121. doi: 10.1186/s10194-020-01188-1
  9. Abdullahi A, Candan SA, Abba MA, et al. Neurological and Musculoskeletal Features of COVID-19: A Systematic Review and Meta-Analysis. Front Neurol. 2020;11:687. doi: 10.3389/fneur.2020.00687
  10. Shigemura J, Ursano RJ, Morganstein JC, et al. Public responses to the novel 2019 coronavirus (2019-nCoV) in Japan: Mental health consequences and target populations. Psychiatry Clin Neurosci. 2020;74(4):281–282. doi: 10.1111/pcn.12988
  11. Karayanni H, Dror AA, Oren D, et al. Exacerbation of chronic myofascial pain during COVID-19. Advances in Oral and Maxillofacial Surgery. 2021;1:100019. doi: 10.1016/j.adoms.2021.100019
  12. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv [Preprint]. 2021:2021.01.27.21250617. doi: 10.1101/2021.01.27.21250617. Update in: Sci Rep. 2021;11(1):16144.
  13. Oguz-Akarsu E, Gullu G, Kilic E, et al. Pandemic Study Team. Insight into pain syndromes in acute phase of mild-to-moderate COVID-19: Frequency, clinical characteristics, and associated factors. Eur J Pain. 2022;26(2):492–504. doi: 10.1002/ejp.1876
  14. Funk AL, Kuppermann N, Florin TA, et al. Post-COVID-19 Conditions Among Children 90 Days After SARS-CoV-2 Infection. JAMA Netw Open. 2022;5(7):e2223253. doi: 10.1001/jamanetworkopen.2022.23253
  15. Schieszer J. Pain Syndromes Common in Patients With Long COVID [Internet]. Clinical Pain Advisor [cited 04 November 2022]. Available from: https://www.clinicalpainadvisor.com/chronic-pain/long-term-effects-of-covid-19-including-pain-syndromes/.
  16. Li L.Q, Huang T, Wang YQ, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–583. doi: 10.1002/jmv.25757
  17. Morjaria JB, Omar F, Polosa R, et al. Bilateral lower limb weakness: a cerebrovascular consequence of covid-19 or a complication associated with it? Intern Emerg Med. 2020;15(5):901–905. doi: 10.1007/s11739-020-02418-9
  18. Bakılan F, Gökmen İG, Ortanca B, et al. Musculoskeletal symptoms and related factors in postacute COVID-19 patients. Int J Clin Pract. 2021;75(11):e14734. doi: 10.1111/ijcp.14734
  19. Herrero-Montes M, Fernández-de-Las-Peñas C, Ferrer-Pargada D, et al. Prevalence of Neuropathic Component in Post-COVID Pain Symptoms in Previously Hospitalized COVID-19 Survivors. Int J Clin Pract. 2022;2022:3532917. doi: 10.1155/2022/3532917
  20. Fernández-de-Las-Peñas C, Navarro-Santana M, Plaza-Manzano G, et al. Time course prevalence of post-COVID pain symptoms of musculoskeletal origin in patients who had survived severe acute respiratory syndrome coronavirus 2 infection: a systematic review and meta-analysis. Pain. 2022;163(7):1220–1231. doi: 10.1097/j.pain.0000000000002496
  21. Attal N, Martinez V, Bouhassira D. Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic. Pain Rep. 2021;6(1):e884. doi: 10.1097/PR9.0000000000000884
  22. Shraim MA, Massé-Alarie H, Hodges PW. Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a systematic review. Pain. 2021;162(4):1007–1037. doi: 10.1097/j.pain.0000000000002113
  23. Vaz A, Costa A, Pinto A, et al. Complex regional pain syndrome after severe COVID-19 — A case report. Heliyon. 2021;7(11):e08462. doi: 10.1016/j.heliyon.2021.e08462
  24. McWilliam M, Samuel M, Alkufri FH. Neuropathic pain post-COVID-19: a case report. BMJ Case Rep. 2021;14(7):e243459. doi: 10.1136/bcr-2021-243459
  25. Attal N, Bouhassira D, Baron R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 2018;17(5):456–466. doi: 10.1016/S1474-4422(18)30071-1
  26. Rowbotham MC. Is fibromyalgia a neuropathic pain syndrome? J Rheumatol Suppl. 2005;75:38–40.
  27. Cruccu G, Truini A. Tools for assessing neuropathic pain. PLoS Med. 2009;6(4):e1000045. doi: 10.1371/journal.pmed.1000045
  28. Clear J, Uebbing E, Hartman K. Emerging Neuropathic Pain Treatments. 2022;(22)33. Accessed: November 4, 2022. Available from: https://www.practicalpainmanagement.com/issue202203/emerging-neuropathic-pain-treatments.
  29. Zha M, Chaffee K, Alsarraj J. Trigger point injections and dry needling can be effective in treating long COVID syndrome-related myalgia: a case report. J Med Case Rep. 2022;16(1):31. doi: 10.1186/s13256-021-03239-w
  30. Tokumasu K, Honda H, Sunada N, et al. Clinical Characteristics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Diagnosed in Patients with Long COVID. Medicina (Kaunas). 2022;58(7):850. doi: 10.3390/medicina58070850
  31. Fricton JR, Kroening R, Haley D, Siegert R. Myofascial pain syndrome of the head and neck: a review of clinical characteristics of 164 patients. Oral Surg Oral Med Oral Pathol. 1985;60(6):615–623. doi: 10.1016/0030-4220(85)90364-0
  32. Tantanatip A, Chang KV. Myofascial Pain Syndrome. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
  33. Simons DG, Travell JG, Simons LS. Myofascial Pain and Dysfunction: the Trigger Point Manual. Frost EAM, editor. Philadelphia: Lippincott Williams & Wilkins; 1991.
  34. Tough EA, White AR, Richards S, Campbell J. Variability of criteria used to diagnose myofascial trigger point pain syndrome — evidence from a review of the literature. Clin J Pain. 2007;23(3):278–286. doi: 10.1097/AJP.0b013e31802fda7c
  35. Couppé C, Midttun A, Hilden J, et al. Spontaneous Needle Electromyographic Activity in Myofascial Trigger Points in the Infraspinatus Muscle: A Blinded Assessment. Journal of Musculoskeletal Pain. 2001;9:16–17. doi: 10.1300/j094v09n03_02
  36. Giamberardino MA, Affaitati G, Fabrizio A, Costantini R. Myofascial pain syndromes and their evaluation. Best Pract Res Clin Rheumatol. 2011;25(2):185–198. doi: 10.1016/j.berh.2011.01.002
  37. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728
  38. Hamming I, Timens W, Bulthuis M., et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570
  39. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016–1035.e19. doi: 10.1016/j.cell.2020.04.035
  40. Saud A, Naveen R, Aggarwal R, Gupta L. COVID-19 and Myositis: What We Know So Far. Curr Rheumatol Rep. 2021;23(8):63. doi: 10.1007/s11926-021-01023-9
  41. Hannah JR, Ali SS, Nagra D, et al. Skeletal muscles and Covid-19: a systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection. Clin Exp Rheumatol. 2022;40(2):329–338. doi: 10.55563/clinexprheumatol/mkfmxt
  42. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08
  43. Chen R, Wang K, Yu J, et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021;11:573095. doi: 10.3389/fneur.2020.573095
  44. Montalvan V, Lee J, Bueso T, et al. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921
  45. Li K, Wohlford-Lenane C, Perlman S, et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis. 2016;213(5):712–722. doi: 10.1093/infdis/jiv499
  46. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. doi: 10.1126/science.abd2985
  47. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–628. doi: 10.1016/j.addr.2011.11.002
  48. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep. 2019;9(1):2621. doi: 10.1038/s41598-019-39191-5
  49. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122
  50. Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020;14(5):533–541. doi: 10.1007/s11684-020-0786-5
  51. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28(2):254–260. doi: 10.1002/jnr.490280213
  52. Schwartz M, Deczkowska A. Neurological Disease as a Failure of Brain-Immune Crosstalk: The Multiple Faces of Neuroinflammation. Trends Immunol. 2016;37(10):668–679. doi: 10.1016/j.it.2016.08.001
  53. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–1762. doi: 10.1001/jama.291.14.1753
  54. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304(16):1787–1794. doi: 10.1001/jama.2010.1553
  55. Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol. 2017;27(5):629–644. doi: 10.1111/bpa.12537
  56. Sierra A, Beccari S, Diaz-Aparicio I, et al. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. 2014;2014:610343. doi: 10.1155/2014/610343
  57. Goodall S, Twomey R, Amann M. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance. Fatigue. 2014;2(2):73–92. doi: 10.1080/21641846.2014.909963
  58. Zhao M, Zhu P, Fujino M, et al. Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies. Int J Mol Sci. 2016;17(12):2078. doi: 10.3390/ijms17122078
  59. Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent regulation of inflammatory pathways in immune cells. J Clin Invest. 2016;126(10):3716–3724. doi: 10.1172/JCI84433
  60. Beyrouti R, Adams ME, Benjamin L, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry. 2020;91(8):889–891. doi: 10.1136/jnnp-2020-323586
  61. Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787
  62. Middeldorp S, Coppens M, van Haaps TF, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995–2002. doi: 10.1111/jth.14888
  63. Poissy J, Goutay J, Caplan M, et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation. 2020;142(2):184–186. doi: 10.1161/CIRCULATIONAHA.120.047430
  64. Marques-Deak A, Cizza G, Sternberg E. Brain-immune interactions and disease susceptibility. Mol Psychiatry. 2005;10(3):239–250. doi: 10.1038/sj.mp.4001643
  65. Guo Q, Zheng Y, Shi J, et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav Immun. 2020;88:17–27. doi: 10.1016/j.bbi.2020.05.038
  66. Kempuraj D, Selvakumar GP, Ahmed ME, et al. COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation. Neuroscientist. 2020;26(5–6):402–414. doi: 10.1177/1073858420941476
  67. Ownby RL, Crocco E, Acevedo A, et al. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63(5):530–538. doi: 10.1001/archpsyc.63.5.530
  68. Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020;45(8):100618. doi: 10.1016/j.cpcardiol.2020.100618
  69. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127
  70. Chen LYC, Quach TTT. COVID-19 cytokine storm syndrome: a threshold concept. Lancet Microbe. 2021;2(2):e49–e50. doi: 10.1016/S2666-5247(20)30223-8
  71. Chen R, Lan Z, Ye J, et al. Cytokine Storm: The Primary Determinant for the Pathophysiological Evolution of COVID-19 Deterioration. Front Immunol. 2021;12:589095. doi: 10.3389/fimmu.2021.589095
  72. Que Y, Hu C, Wan K, et al. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol. 2022;41(2):217–230. doi: 10.1080/08830185.2021.1884248
  73. McGonagle D, Ramanan AV, Bridgewood C. Immune cartography of macrophage activation syndrome in the COVID-19 era. Nat Rev Rheumatol. 2021;17(3):145–157. doi: 10.1038/s41584-020-00571-1
  74. Rodriguez-Smith JJ, Verweyen EL, Clay GM, et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study. Lancet Rheumatol. 2021;3(8):e574–e584. doi: 10.1016/S2665-9913(21)00139-9
  75. Pergolizzi JV Jr, Raffa RB, Varrassi G, et al; NEMA Research Group. Potential neurological manifestations of COVID-19: a narrative review. Postgrad Med. 2022;134(4):395–405. doi: 10.1080/00325481.2020.1837503
  76. Jha NK, Ojha S, Jha SK, et al. Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. J Mol Neurosci. 2021;71(11):2192–2209. doi: 10.1007/s12031-020-01767-6
  77. Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020;30(3):e2107. doi: 10.1002/rmv.2107

Copyright (c) 2022 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies