The influence of constant slight myopic defocus prescribed in the binocular and alternating monocular spectacle formats on the onset and progression of myopia in the children


Cite item

Full Text

Abstract

Objective. To elucidate the long-term influence of constant slight myopic defocus prescribed in the binocular and the alternating monocular spectacle formats on the dynamics of refraction and its components in the children. Material and methods. The study involved 129 children (258 eyes) at the age varying from 5 to 12 years. The patients were divided into four groups. Group 1 was comprised of 48 children at the age of 5-8 years presenting with emmetropia and risk factors of the development of myopia. Group 2 consisted of 46 children at the age from 7 to 11 years with slight myopia between -0.75 and -2.25 D to whom the alternating continuous wearing of two pairs of spectacles was prescribed. The first control group was composed of 15 children (30 eyes) at the age from 6 to 9 (mean 7.5 ± 1.4) years presenting with pseudomyopia without correction. The second control group was comprised of 20 children (40 eyes) at the age from 7 to 12 (mean 9.7 ± 1.2) years having slight myopia and wearing conventional spectacle correction. Results. The children of group 1subjected to constant slight myopic defocus during one month experienced a shift of refraction toward hypermetropia attributable to the thinning of the lens and deepening of the anterior chamber. None of the children in this group developed myopia during the follow-up period of up to 9 years. In the patients of group 2, refraction remained unaltered during either 4 years (81.8% of the cases) or 7 years (66.6% of the cases). An insignificant increase in the length of the antero-posterior axis was documented in these children along with the significant increase of the horizontal diameter (HD) of the eyeball. The dynamic observation of the children of both control groups during 3 years has demonstrated the strengthening of cycloplegic refraction associated with the significant increase of the length of the antero-posterior axis and the insignificant increase of the transverse diameter of the eyeball. Conclusion. The permanent slight myopic defocusing of the image in the binocular spectacle format slows down the growth of the eyes and the shift of refraction toward myopia in the children with mild hypermetropia, emmetropia, and slight myopia. The proposed method for alternating monolateral constant slight myopic defocus inhibits progression of myopia in 81.8% of the children presenting with mild myopia during 4 years and in 66.6% of them during 7 years.

About the authors

E. P Tarutta

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

N. V Khodzhabekyan

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

O. B Filinova

Municipal Children’s Polyclinic No 133, Moscow Health Departmnet

Moscow, Russian Federation

Sergei V. Milash

The Helmholtz Moscow Research Institute of Eye Diseases

Email: sergey_milash@yahoo.com
ophthalmologist Moscow, 105062, Russian Federation

G. V Kruzhkova

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

References

  1. Lin L.L.K., Shih Y.F., Hsiao C.K., Chen C.J. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann. Acad. Med. Singapore. 2004; 33 (1): 27-33.
  2. Foster P.J., Jiang Y. Epidemiology of myopia. Eye (Lond.). 2014; 28 (2): 202-8.
  3. Curtin B.J., Karlin D.B. Axial length measurements and fundus changes of the myopic eye. I. The posterior fundus. Trans. Am. Ophthalmol. Soc. 1970; 68: 312-34.
  4. Pierro L., Camesasca F.I., Mischi M., Brancato R. Peripheral retinal changes and axial myopia. Retina. 1992; 12 (1) : 12-7.
  5. Lim R., Mitchell P., Cumming R.G. Refractive associations with cataract: the Blue Mountains Eye Study. Invest. Ophthalmol. Vis. Sci. 1999; 40: 3021-6.
  6. Mitchell P., Hourihan F., Sandbach J., Wang J.J. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999; 106: 2010-5.
  7. Edwards M.H., Li R.W., Lam C.S., Lew J.K., Yu B.S. The Hong Kong progressive lens myopia control study: study design and main findings. Invest. Ophthalmol. Vis. Sci. 2002; 43: 2852-8.
  8. Gwiazda J., Hyman .L, Hussein M., Everett D., Norton T.T., Kurtz D. et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest. Ophthalmol. Vis. Sci. 2003; 44: 1492-500.
  9. Gwiazda J.E., Hyman L., Norton T.T., Hussein M., Marsh-Tootle W., Manny R. et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest. Ophthalmol. Vis. Sci. 2004; 45: 2143-51.
  10. Chung K., Mohidin N., O’Leary D.J. Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res. 2002; 42: 2555-9.
  11. Flitcroft D.I. The lens paradigm in experimental myopia: Oculomotor, optical and neurophysiological considerations. Ophthalm. Physiol. Opt. 1999; 19: 103-11.
  12. Phillips J.R. Monovision slows juvenile myopia progression unilaterally. Br. J. Opthalmol. 2005; 89: 1196-200.
  13. Phillips J. Spectacle lens defocus alters myopia progression rate in schoolchildren. In: Proceedings of the 10-th International Myopia Conference. Cambridge; 2004: 38.
  14. Irving E.L., Callender M.G., Sivak J.G. Inducing ametropias in hatchling chicks by defocus - Aperture effects and cylindrical lenses. Vision Res. 1995; 35: 1165-74.
  15. Norton T.T., Siegwart J.T. Animal models of emmetropization: Matching axial length to the focal plane. J. Am. Optom. Assoc. 1995; 66: 405-14.
  16. Schaeffel F., Howland H.C. Mathematical model of emmetropization in the chicken. J. Opt. Soc. Am. 1988; 5: 2080-6.
  17. Smith E.L., Hung L.F., Harwerth R.S. Effects of optically induced blur on the refractive status of young monkeys. Vision Res. 1994; 34: 293-301.
  18. Wallman J., Adams J.I. Developmental aspects of experimental myopia in chicks: Susceptibility, recovery and relation to emmetropization. Vision Res. 1987; 27: 1139-63.
  19. Wallman J., Wildsoet C., Xu A., Gottlieb M.D., Nickla D.L., Marran L., et al. Moving the retina: Choroidal modulation of refractive state. Vision Res. 1995; 35: 37-50.
  20. Wildsoet C.F. Active emmetropization-evidence for its existence and ramifications for clinical practice. Ophthalm. Physiol. Opt. 1997; 17: 279-90.
  21. Hung G.K., Ciuffreda K.J. Model of human refractive error development. Curr. Eye Res. 1999; 19: 41-52.
  22. Hung G.K., Ciuffreda K.J. An incremental retinal-defocus theory of the development of myopia. Comments Theoret. Biol. 2003; 8: 511-38.
  23. Tarutta E.P. An inhibitory effect of penalization (hyperopic overcorrection) on eye growth and refractogenesis. In: Proceedings of the 10-th International Myopia Conference, Cambridge; 2004: 27.
  24. Тарутта Е.П., Ходжабекян Н.В., Филинова О.Б., Кружкова Г.В. Влияние постоянной дозированной слабомиопической дефокусировки на постнатальный рефрактогенез. Вестн. офтальмол. 2008; (6): 21-5.
  25. Grosvenor T., Goss D.A. Clinical Management of Myopia. Boston: Butterwotth-Heinemann; 1999.
  26. Mutti D.O., Zadnik K., Fuzaro R.E., Friedman N.E., Sholtz R.I., Adams A.J. Optical and structural development of the crystalline lens in childhood. Invest. Ophthalmol. Vis. Sci. 1998; 39: 120-33.

Copyright (c) 2016 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies