Role of studying the pathogenesis of retinopathy of prematurity in optimizing disease screening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: The efficiency of treatment and prevention of retinopathy of prematurity (ROP) has improved. In addition, the development of a disease screening system to reduce the incidence of disability resulting from this pathology is important.

Aim: This study aimed to determine new laboratory criteria for screening and predicting the ROP course through in-depth investigation of the molecules participating in the pathogenesis of ROP.

Material and methods: A comprehensive clinical and experimental study was performed to assess the local and systemic levels of 49 cytokines with various biological effects, four monoamines, and angiotensin-II (AT-II) at different stages of the pathological process. In the clinical analysis, 165 preterm infants at risk of ROP development were examined. For the experimental part, the disease course of 145 Wistar infant rats in the developed model of experimental ROP was analyzed.

Results: Among cytokines, the seven most promising potential laboratory markers of ROP development and adverse course were as follows: MCP1 >95 pg/mL, IGF-II >140 pg/mL, TGFbeta1 <18000 pg/mL, and IGF-I <24 pg/mL in the blood serum of preterm infants before the first signs of ROP and VEGF-A >108 pg/mL, TGF-beta2 >100 pg/mL, and PDGF-BB >1800 pg/mL at ROP manifestation. Among monoamines, serotonin (<17.0 pg/mL) and L-DOPA indicated their prognostic value in the clinical and experimental settings. Moreover, a possible prognostic role of AT-II was found.

Conclusion: In this study, methods to improve the ROP screening system are outlined, but further work is necessary to assess the possibility of implementing the results in clinical practice

About the authors

Lyudmila A. Katargina

Helmholtz National Medical Research Center of Eye Diseases

Email: katargina@igb.ru
ORCID iD: 0000-0002-4857-0374

Dr. Med. Sci., professor

Russian Federation, Moscow

Natal’ya B. Chesnokova

Helmholtz National Medical Research Center of Eye Diseases

Email: nchesnokova2012@yandex.ru
ORCID iD: 0000-0002-7856-8005

Dr. Biol. Sci., professor

Russian Federation, Moscow

Natal’ya V. Balatskaya

Helmholtz National Medical Research Center of Eye Diseases

Email: balnat07@rambler.ru
ORCID iD: 0000-0001-8007-6643
SPIN-code: 4912-5709

Cand. Med. Sci.

Russian Federation, Moscow

Natal’ya Anatolievna Osipova

Helmholtz National Medical Research Center of Eye Diseases

Email: natashamma@mail.ru
ORCID iD: 0000-0002-3151-6910
SPIN-code: 5872-6819

Cand. Med. Sci.

Russian Federation, Moscow

Anna Yurievna Panova

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: annie_panova18@mail.ru
ORCID iD: 0000-0003-2103-1570

junior researcher

Russian Federation, Moscow

References

  1. Kim SJ, Sonmez K, Swan R, et al. Identification of candidate genes and pathways in retinopathy of prematurity by whole exome sequencing of preterm infants enriched in phenotypic extremes. Sci Rep. 2021;11(1):4966. doi: 10.1038/s41598-021-83552-y
  2. Saydasheva EI, Gorelik YV, Buyanovskaya SV, Kovshov FV. Retinopathy of prematurity: the course and results of treatment in children with gestational age less than 27 weeks. Russian pediatric ophthalmology. 2015;10(2):28-32. (In Russ).
  3. Federal’’nye klinicheskie rekomendatsii “diagnostika, monitoring i lechenie aktivnoi fazy retinopatii nedonoshennykh” (natsional’’nyi protokol). Russian pediatric ophthalmology. 2015;10(1):54–60. (In Russ).
  4. Katargina LA, Trusova SA, Shevernaya OA, et al. The frequency and clinical course of retinopathy of prematurity in modern developmental care conditions as evidenced by the Moscow region perinatal center. Russian Ophthalmological Journal. 2020;13(3):15-20. (In Russ). doi: 10.21516/2072-0076-2020-13-3-15-20
  5. Trese MT, Denisova EV, Katargina LA. Telemedicine with Smart Software for retinopathy of prematurity screening: experience from a program in the USA and prospects for use. Russian pediatric ophthalmology. 2014;9(2):5–8. (In Russ).
  6. Biten H, Redd TK, Moleta C, et al. Diagnostic Accuracy of Ophthalmoscopy vs Telemedicine in Examinations for Retinopathy of Prematurity. JAMA Ophthalmol. 2018;136(5):498-504. doi: 10.1001/jamaophthalmol.2018.0649
  7. Begley BA, Martin J, Tufty GT, Suh DW. Evaluation of a Remote Telemedicine Screening System for Severe Retinopathy of Prematurity. J Pediatr Ophthalmol Strabismus. 2019;56(3):157-161. doi: 10.3928/01913913-20190215-01
  8. Lofqvist C, Hansen-Pupp I, Andersson E, et al. Validation of a new retinopathy of prematurity screening method monitoring longitudinal postnatal weight and insulinlike growth factor I. Arch Ophthalmol. 2009;127(5):622-627. doi: 10.1001/archophthalmol.2009.69
  9. Cao JH, Wagner BD, Cerda A, et al. Colorado retinopathy of prematurity model: a multi-institutional validation study. J AAPOS. 2016;20(3):220-225. doi: 10.1016/j.jaapos.2016.01.017
  10. Biniwale M, Weiner A, Sardesai S, et al. Early postnatal weight gain as a predictor for the development of retinopathy of prematurity. J Matern Fetal Neonatal Med. 2019;32(3):429-433. doi: 10.1080/14767058.2017.1381902
  11. Pivodic A, Hard AL, Lofqvist C, et al. Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics. JAMA Ophthalmol. 2020;138(1):21-29. doi: 10.1001/jamaophthalmol.2019.4502
  12. Katargina LA, Slepova OS, Demchenko EN, Osipova NA. The role of the systemic disbalance of serum cytokine levels in pathogenesis of retinopathy of prematurity. Russian pediatric ophthalmology. 2015;(4):16–20. (In Russ).
  13. Panova AY. Faktory patologicheskogo angiogeneza v patogeneze retinopatii nedonoshennykh. Kliniko-eksperimental’noe issledovanie [dissertation]. Mosсow; 2021. (In Russ).
  14. Katargina LA, Osipova NA, Panova AY, et al. The role of catecholamines in the development of pathological retina neovascularization in an experimental model of retinopathy of prematurity in rats. Doklady Akademii nauk. 2019;489(3):313-317. (In Russ). doi: 10.31857/s0869-56524893313-317
  15. Katargina LA, Osipova NA, Panova AJ, et al. Studying the pathogenic role of catecholamines in the development of retinopathy of prematurity on an experimental model of the disease. Russian Ophthalmological Journal. (In Russ). 2019;12(4):64-69. doi: 10.21516/2072-0076-2019-12-4-64-69
  16. Katargina LA, Khoroshilova-Maslova IP, Bondarenko NS, et al. Angiogenic properties of catecholamines from the viewpoint of the pathogenesis of retinopathy of prematurity. Russian Ophthalmological Journal. (In Russ). 2018;11(4):49-54. doi: 10.21516/2072-0076-2018-11-4-49-54
  17. Katargina LA, Denisova EV, Osipova NA, Panova AY. The Role of Monoamines in Regulation of Angiogenesis and Prospects of Their Application in Retinopathy of Prematurity. Russian Pediatric Ophthalmology. 2018;13(2):76-80. (In Russ). doi: 10.18821/1993-1859-2018-13-2-76-80
  18. Katargina LA, Chesnokova NB, Beznos OV, et al. Angiotensin-II as a Trigger Factor in the Development of Retinopathy of Prematurity. Ophthalmology in Russia. 2020;17(4):746-751. (In Russ). doi: 10.18008/1816-5095-2020-4-746-751
  19. Katargina LA, Khoroshilova-Maslova IP, Majbogin AM, et al. Pathomorphological features of the development of experimental retinopathy of prematurity. Mezhdunarodnyi zhurnal prikladnykh i fundamental’’nykh issledovanii. 2017;(3-2):190-194. (In Russ).
  20. Zheng Y, Sun Q, Xu X, Wang W. Novel peptide derived from IGF-2 displays anti-angiogenic activity in vitro and inhibits retinal angiogenesis in a model of oxygen-induced retinopathy. Clin Exp Ophthalmol. 2020;48(9):1261-1275. doi: 10.1111/ceo.13864
  21. Eastlake K, Banerjee PJ, Angbohang A, et al. Muller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia. 2016;64(4):495-506. doi: 10.1002/glia.22942
  22. Yu H, Yuan L, Zou Y, et al. Serum concentrations of cytokines in infants with retinopathy of prematurity. APMIS. 2014;122(9):818-823. doi: 10.1111/apm.12223
  23. Natarajan G, Shankaran S, McDonald SA, et al. Circulating beta chemokine and MMP 9 as markers of oxidative injury in extremely low birth weight infants. Pediatr Res. 2010;67(1):77-82. doi: 10.1203/PDR.0b013e3181c0b16c
  24. Yoshida S, Yoshida A, Ishibashi T, et al. Role of MCP-1 and MIP-1alpha in retinal neovascularization during postischemic inflammation in a mouse model of retinal neovascularization. J Leukoc Biol. 2003;73(1):137-144. doi: 10.1189/jlb.0302117
  25. Yoshida S, Yoshida A, Ishibashi T. Induction of IL-8, MCP-1, and bFGF by TNF-alpha in retinal glial cells: implications for retinal neovascularization during post-ischemic inflammation. Graefes Arch Clin Exp Ophthalmol. 2004;242(5):409-413. doi: 10.1007/s00417-004-0874-2
  26. Hong KH, Ryu J, Han KH. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood. 2005;105(4):1405-1407. doi: 10.1182/blood-2004-08-3178
  27. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276-1312. doi: 10.1101/gad.1653708
  28. Seo MS, Okamoto N, Vinores MA, et al. Photoreceptor-Specific Expression of Platelet-Derived Growth Factor-B Results in Traction Retinal Detachment. The American Journal of Pathology. 2000;157(3):995-1005. doi: 10.1016/s0002-9440(10)64612-3
  29. Zehetner C, Kirchmair R, Neururer SB, et al. Systemic upregulation of PDGF-B in patients with neovascular AMD. Invest Ophthalmol Vis Sci. 2014;55(1):337-344. doi: 10.1167/iovs.13-12978
  30. Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol. 2006;168(6):2036-2053. doi: 10.2353/ajpath.2006.050588
  31. Lin B, Song X, Yang D, et al. Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRbeta and FGFR1. Gene. 2018;654:77-86. doi: 10.1016/j.gene.2018.02.026
  32. Tsioumpekou M, Cunha SI, Ma H, et al. Specific targeting of PDGFRbeta in the stroma inhibits growth and angiogenesis in tumors with high PDGF-BB expression. Theranostics. 2020;10(3):1122-1135. doi: 10.7150/thno.37851
  33. Li H, Zhu R, Zhao R, et al. Role of TGF-Beta1/SMAD2/3 Pathway in Retinal Outer Deep Vascular Plexus and Photoreceptor Damage in Rat 50/10 Oxygen-Induced Retinopathy. Biomed Res Int. 2019;2019:4072319. doi: 10.1155/2019/4072319
  34. Nagineni CN, Samuel W, Nagineni S, et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogen-activated protein kinases. J Cell Physiol. 2003;197(3):453-462. doi: 10.1002/jcp.10378
  35. Sood BG, Madan A, Saha S, et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res. 2010;67(4):394-400. doi: 10.1203/PDR.0b013e3181d01a36
  36. Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006;86(2):106-115. doi: 10.1038/labinvest.3700375
  37. Cerezo AB, Labrador M, Gutierrez A, et al. Anti-VEGF Signalling Mechanism in HUVECs by Melatonin, Serotonin, Hydroxytyrosol and Other Bioactive Compounds. Nutrients. 2019;11(10). doi: 10.3390/nu11102421
  38. Xu Y, Lu X, Hu Y, et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1alpha-VEGF pathway in oxygen-induced retinopathy mice. J Pineal Res. 2018;64(4):e12473. doi: 10.1111/jpi.12473
  39. Sarlos S, Rizkalla B, Moravski CJ, et al. Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin. Am J Pathol. 2003;163(3):879-887. doi: 10.1016/s0002-9440(10)63448-7
  40. Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest. 2002;82(6):747-756. doi: 10.1097/01.lab.0000017372.76297.eb

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Plasma serotonin content (pg / ml) in children with and without retinopathy for up to 35 weeks of post-conceptual age.

Download (54KB)
3. Fig. 2. The content of norepinephrine (pg/ml) in the plasma of children with retinopathy.

Download (68KB)

Copyright (c) 2021 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies