The spectrum of mutations in the patients presenting with ABCA4-associated Stargardt's disease in a Russian population


Cite item

Full Text

Abstract

Introduction. Stargardt's disease is a hereditary retinal dystrophy characterized by the early manifestation and the progressive deterioration of visual acuity. The spectrum of mutations in the ABCA4 gene associated with this pathology in the Russian Federation has not been fully investigated. Aim. The objective of the present study was to elucidate the spectrum of mutations in the ABCA4 gene in the Russian patients presenting Stargardt's disease. Materials and methods. The study included a total of 38 unrelated patients at the age varying from 6 to 48 (mean 20 ± 8.9) years having the clinically confirmed diagnosis of Stargardt's disease. The search of mutations in DNA extracted from the peripheral blood lymphocytes of the patients was carried out with the use of a set of oligonucleotide primers (Ion Ampliseq Inherited Disease Panel; Life Technologies, USA). The Ion Torrent PGM Sequencer (Life Technologies, USA) was used for the parallel semiconductor sequencing of the gene-coding regions. All the patients underwent the standard ophthalmological examination, electroretinography, optical coherence tomography, and fundus autofluorescence. Results. We established the spectrum of mutations in the ABCA4 gene in the patients of a Russian population suffering from autosomal-recessive Stargardt's disease. We identified 45 alleles responsible for the development of this condition. 14 of them had been earlier described in the Russian patients while 19 were discovered for the first time in this country although they had been known to occur in other populations. Moreover, we described 12 novel heterozygous variations, viz. c.230T>A (rs61748527), c.4956T>G (rs61750561), c.2820>G (rs81749445). c.5226delT, c.2537A>T, c.57353T, c.893delG, c.702 insATC, c.3896T>G, c.1356delA, c.1341delGAT, and c.231insGAAAA. Discussion. The study has revealed the rather variable phenotype in the patients presenting with ABCA4-associated Stargardt's disease. A wide variety of mutations were shown to be responsible for the difference of the clinical picture of this condition in individual patients. The comparison of the genotypes and the phenotypes has demonstrated the differential effect of the concrete mutations. Conclusion. The spectrum of mutations in the patients presenting with ABCA4-associated Stargardt's disease in the surveyed Russian population is different from that in other populations. We have revealed 12 previously unknown mutations; moreover 19 mutations have been described for the first time in this country although they had been previously known to occur in other populations.

About the authors

Inna Vladimirovna Zol'nikova

The Helmholtz Moscow Research Institute of Eye Diseases

Email: innzolnikova@hotmail.com
doctor of medical sciences, senior research scientist Moscow, 105062, Russian Federation

M. E Ivanova

“Oftalmic” Ltd.

Moscow, 119334, Russian Federation

V. V Strel'nikov

Medicogenetic Research Centre

Moscow 115478, Russian Federation

D. V Levina

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

O. N Demenkova

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

A. S Tanas

Medicogenetic Research Centre

Moscow 115478, Russian Federation

E. V Rogatina

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

I. V Egorova

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

S. Yu Rogova

The Helmholtz Moscow Research Institute of Eye Diseases

Moscow, 105062, Russian Federation

E. Yu Prikazyuk

“Oftalmic” Ltd.

Moscow, 119334, Russian Federation

References

  1. Шамшинова А.М., Зуева М.В., Залетаев Д.В., Цапенко И.В., Зольникова И.В., Яковлев А.А. Современная молекулярная генетика и наследственные дистрофии сетчатки. Клин. офтальмол. 2001; 2 (4): 142.
  2. Шамшинова А.М. Классификация дистрофий сетчатки. В кн.: Наследственные и врожденные заболевания сетчатки и зрительного нерва / Под ред. А.М. Шамшиновой. М.: Медицина; 2001: 36-46.
  3. Зольникова И.В., Рогатина Е.В. Дистрофия Штаргардта: клиника, диагностика, патогенез, лечение. Клиницист. 2010 (1): 29-33.
  4. Birch D. Stargardt disease. In: Heckenlively J., Arden G., ed. Principles and Practice of Clinical Electrophysiology of Vision. 2nd Ed. London: The MIT Press; 2006: 727-34.
  5. Noble K.G., Carr R.E. Stargardt’s disease and fundus flavimaculatus. Arch. Ophthalmol. 1979; 97: 1281-5.
  6. Stargardt K. Uber familiare, progressive Degeneration in der Makulagegend des Auges Graefes. Arch. Ophthalmol. 1909; 71: 534-50.
  7. Blacharski P.A. Fundus flavimaculatus. In: Newsome D.A., ed. Retinal Dystrophies and Degenerations. New York: Raven Press; 1988: 135-59.
  8. Allikmets R., Singh N., Sun H. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997; 15: 236-46.
  9. Nasonkin I., Illing M., Koehler M.R. et al. Mapping of the rod photoreceptor ABC transporter (ABCR) to 1p21-p22.1 and identification of novel mutations in Stargardt’s disease. Hum. Genet. 1998; 102: 21-6.
  10. Sun H., Nathans J. Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat. Genet. 1997; 17: 15-6.
  11. Weng J., Mata N.L., Azarian S.M. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999; 98: 13-23.
  12. Molday L.L., Rabin A.R., Molday R.S. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat. Genet. 2000; 25: 257-8.
  13. Островский М.А. Молекулярные механизмы повреждающего действия света на структуры глаза. В кн.: Клиническая физиология зрения. 3-е изд. / Под ред. А.М. Шамшиновой. М.: MBN; 2006; 109-21.
  14. Quazi F., Lenevich S., Molday R.S. ABCA4 is an N-retinylidenephosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 2012; 3: 925.
  15. Lewis R.A., Shroyer N.F., Singh N. et al. Genotype/Phenotype analysis of a photoreceptor-specific ATP-binding cassette transporter gene, ABCR, in Stargardt disease. Hum. Genet. 1999; 64: 422-34.
  16. Lois N., Holder G.E., Bunce C., Fitzke F.W., Bird A.C. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch. Ophthalmol. 2001; 119: 359-69.
  17. Klevering B.J., Deutman A.F., Maugeri A. et al. The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch. Clin. Exp. Ophthalmol. 2005; 243: 90-100.
  18. Burke T.R., Tsang S.H. Allelic and phenotypic heterogeneity in ABCA4 mutations. Ophthalm. Genet. 2011; 32: 165-74.
  19. Kjellström U. Association between genotype and phenotype in families with mutations in the ABCA4 gene. Molecular Vision. 2014; 20: 89-104.
  20. Gerth C., Andrassi-Darida M., Bock M., et al. Phenotypes of 16 Stargardt macular dystrophy/fundus flavimaculatus patients with known ABCA4 mutations and evaluation of genotype-phenotype correlation. Albrecht Graefes Arch. Ophthalmol. 2002; 240 (8): 628-38.
  21. Yatsenko A.N., Shroyer N.F., Lewis R.A., Lupski J.R. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4). Hum. Genet. 2001; 108: 346-55.
  22. Westeneng-van Haaften S.C., Boon C.J., Cremers F.P. et al. Clinical and genetic characteristics of late-onset Stargardt’s disease. Ophthalmology. 2012; 119: 1199-210.
  23. Maugeri A., van Driel M.A., van de Pol D.J.R. et al. The 2588G→C mutation in ABCA4 gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCA4 mutations in patients with Stargardt disease. Am. J. Hum. Genet. 1999; 64: 1024-35.
  24. Van Driel M.A., Maugeri A., Klevering B.J. et al. ABCR unites what ophthalmologists divide. Ophthalm. Genet. 1998; 19: 117-22.
  25. Shroyer N.F., Lewis R.A., Yatsenko A.N. et al. Cosegregation and functional analysis of mutant ABCR (ABCA4) alleles in families that manifest both Stargardt disease and age-related macular degeneration. Hum. Mol. Genet. 2001; 10: 2671-8.
  26. Rivera A., White K., Stohr H. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am. J. Hum. Genet. 2000; 67: 800-13.
  27. Souied E.H., Ducroq D., Rozet J.M., Gerber S., ABCR gene analysis in familial exudative age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2000; 41: 244-7.
  28. Cremers F.P., Van De Pol D.J., Van Driel M. et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum. Mol. Genet. 1998; 7: 355-62.
  29. Fishman G.A., Stone E.M., Eliason D.A., Taylor C.M. ABCA4 gene sequence variations in patients with autosomal recessive cone-rod dystrophy. Arch. Ophthalmol. 2003; 121: 851-5.
  30. Birch D.G., Peters A.Y., Locke K.L. et al Visual function in patients with cone-rod dystrophy (CRD) associated with mutations in the ABCA4 (ABCR) gene. Exp. Eye Res. 2001; 73: 877-86.
  31. Rudolph G., Kalpadakis P., Haritoglou C., et al. Mutationen im ABCA4-Gene in einer Familie mit Stargardtscher Erkrankung und Retinitis pigmentosa (STGD1/RP19). Klin. Monatsbl. Augenheilk. 2002; 219: 590-6.
  32. Shroyer N.F., Lewis R.A., Yatsenko A.N., and Lupski J.R. Null missense ABCR (ABCA4) mutations in a family with Stargardt disease and retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2001; 42: 2757-61.
  33. Шамшинова А.М., Говардовский В.И., Голубцов К.В. Локальная электроретинография в клинике глазных болезней. Вест. офтальмол. 1989; 105 (6): 47-9.
  34. Зольникова И.В., Карлова И.З., Рогатина Е.В. Макулярная и мультифокальная ЭРГ в диагностике дистрофии Штаргардта. Вест. офтальмол. 2009; 125 (1): 41-6.
  35. Деменкова О.Н., Зольникова И.В., Иванова М.Е. и др. Макулярная электроретинография и методы визуализации в диагностике болезни Штаргардта. Вестник новых медицинских технологий. 2014; 1 (электронный журнал).
  36. Зольникова И.В. Современные электрофизиологические и психофизические методы диагностики при дистрофиях сетчатки (обзор литературы). Офтальмохирургия и терапия. 2004; (2): 30-40.
  37. LaChapelle P., Little J. M., Roy M.S. The electroretinogram in Stargardt’s disease and fundus flavimaculatus. Docum. Ophthalmol. 1990; 73: 395-404.
  38. Querques G., Leveziel N., Benhamou N. et al. Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br. J. Ophthalmol. 2006; 90 (9): 1157-62.
  39. Testa F., Rossi S., Sodi A. et al. Correlation between photoreceptor layer integrity and visual function in patients with Stargardt disease: implications for gene therapy. Invest. Ophthalmol. Vis. Sci. 2012; 53: 4409-15.
  40. Gomes N.L., Greenstein V.C., Carlson J.N. et al. A comparison of fundus autofluorescence and retinal structure in patients with Stargardt disease. Invest. Ophthalmol. Vis. Sci. 2009; 50 (8): 3953-9.
  41. Cukras С.А., Wong W.T., Caruso R. et al. Centrifugal Expansion of Fundus Autofluorescence Patterns in Stargardt Disease Over Time. Arch. Ophthalmol. 130 (2): 171-9.
  42. Smith R.T., Gomes R.T., Barile G. et al. Lipofuscin autofluorescent metrics in progressive STGD. Invest. Ophthalmol. Vis. Sci. 2009; 50 (8): 3907-14.
  43. Егорова Т.С. Слабовидение у детей, методы и способы его коррекции. В кн.: Зрительные функции и их коррекция у детей / Под ред. С.Э. Аветисова, Т.П. Кащенко, А.М. Шамшиновой. М.; Медицина; 2005: 14-38.

Copyright (c) 2016 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies