THE BASIC STRATEGY OF DEVELOPMENT AN ANIMAL MODEL OF RETINOPATHY OF PREMATURITY


Cite item

Full Text

Abstract

This review presents the foundation of the development of an animal model of retinopathy of prematurity and a description of the existing animal models. The review also discusses the importance of animal models for the study of the pathogenesis of retinopathy of prematurity and the search for new approaches to the treatment of this disease.

About the authors

L. A Katargina

Federal state budgetary institution «Moscow Helmholtz Institute of Ophthalmology», Ministry of Health of the Russian Federation

N. A Osipova

Federal state budgetary institution «Moscow Helmholtz Institute of Ophthalmology», Ministry of Health of the Russian Federation

References

  1. Dorfman A., Dembinska O., Chemtob S., Lachapelle P. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest. Ophthalmol. Vis. Sci. 2008; 49(1): 458—66.
  2. Dorfman A.L., Cuenca N., Pinilla I., Chemtob S., Lachapelle P. Immuno-histochemical evidence of synaptic retraction, cytoarchitectural remodeling, and cell death in the inner retina of the rat model of oxygen-induced retinopathy (OIR). Invest. Ophthalmol. Vis. Sci. 2011; 52 (3): 1693—708.
  3. Dorfman A.L., Polosa A., Joly S., Chemtob S., Lachapelle P. Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50(5): 2436-2450.
  4. Fulton A.B., Hansen R.M., Moskowitz A., Akula J.D. The neurovascular retina in retinopathy of prematurity. Progr. Retin. Eye Res. 2009; 28(6): 452—82.
  5. Grossniklaus H.E., Kang S.J., Berglin L. Animal models of choroidal and retinal neovascularization. Progr. Retin. Eye Res. 2010; 29 (6): 500—19.
  6. Hartnett M.E. Studies on the pathogenesis of avascular retina and neo-vasculatization into the vitreous in peripheral severe retinopathy of prematurity (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 2010; 108: 96—119.
  7. Hartnett M.E., Penn J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med. 2012; 367 (26): 2515—26.
  8. Ozkan H., Duman N., Kumral A., Kasap B., Ozer E.A., Lebe B. et al. Inhibition of vascular endothelial growth factor-induced retinal neovascularization by retinoic acid in experimental retinopathy of prematurity. Physiol. Res. 2006; 55 (3): 267—75.
  9. Penn J.S., Tolman B.L., Lowery L.A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest. Ophthalmol. Vis. Sci. 1993; 34 (3): 576—85.
  10. Byfield G., Budd S., Hartnett M.E. Supplemental oxygen can cause intravitre-ous neovascularization through JAK/STAT pathways in a model of retinopathy of prematurity. Invest. Ophthalmol. Vis Sci. 2009; 50 (7): 3360—5.
  11. Saito Y., Uppal A., Byfield G., Budd S., Hartnett M.E. Activated NAD(P) H oxidase from supplemental oxygen induces neovascularization independent of vegf in retinopathy of prematurity model. Invest. Ophthalmol. Vis. Sci. 2008; 49 (4): 1591—8.
  12. Penn J.S., Thum L.A., Naash M.I. Oxygen-Induced Retinopafhy in the Rat. Vitamins C and E as potential therapies. Invest. Ophthalmol. Vis. Sci. 1992; 33 (6): 1836—45.
  13. Saito Y., Geisen P., Uppal A., Hartnett M.E. Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol. Vis. 2007; 13: 840—53.
  14. Cunningham S., McColm J.R., Wade J., Sedowofia K., McIntosh N., Fleck B. A novel model of retinopathy of prematurity simulating preterm oxygen variability in the rat. Invest. Ophthalmol. Vis. Sci. 2000; 41 (13): 4275—80.
  15. Tea M., Fogarty R., Brereton HM., Michael M.Z., Van der HoekM.B., Tsykin A. et al. Gene expression microarray analysis of early oxygen-induced retinopathy in the rat. J. Ocul. Biol. Dis. Infor. 2009; 2 (4): 190—201.
  16. Barnett J.M., Yanni S.E., Penn J.S. The development of rat model of retinopathy of prematurity. Docum. Ophthalmol. 2010; 120 (1): 3—12.
  17. Ashton N., Blach R. Communications studies on developing retinal vessels. Brit. J. Ophthalmol. 1961; 45 (5): 321—40.
  18. Kremer I., Kissun R., Nissenkorn I., Ben-Sira I., Garnerf A. Oxygen-induced refinopathy in newborn kittens. Invest. Ophthalmol. Vis. Sci. 1987; 28: 126—30.
  19. McLeod D.S., Brownstein R., Lutty G.A. Vaso-obliteration in the canine model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 1996; 37 (2): 300—11.
  20. Smith L.E., Wesolowski E., McLellan A., Kostyk S.K., D’Amato R., Sullivan R. et al. Oxygen-induced retinopathy in the mouse. Invest. Ophthalmol. Vis. Sci. 1994; 35 (1): 101—11.
  21. Reynaud X., Dorey C.K. Extraretinal neovascularization induced by hypoxic episodes in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1994; 35 (8): 3169—77.
  22. Penn J.S., Henry M.M., Wall P.T., Tolman B.L. The range of Pao2 variation determines the severity of oxygen-induced retinopathy in newborn rats. Invest. Ophthalmol. Vis. Sci. 1995; 36 (10): 2063—70.
  23. Penn J.S., Tolman B.L., Henry MM. Oxygen-induced retinopathy in the rat: Relationship of retinal nonperfusion to subsequent neovascularization. Invest. Ophthalmol. Vis. Sci. 1994; 35 (9): 3429—35.
  24. Geisen P., Peterson L.J., Martiniuk D., Uppal A., Saito Y., Hartnett M.E. Neutralizing antibody to VEGF reduces intravitreous neovascularization and may not interfere with ongoing intraretinal vascularization in a rat model of retinopathy of prematurity. Mol. Vis. 2008; 14: 345—57.
  25. Liu K., Akula J.D., Falk C., Hansen RM., Fulton A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2006; 47 (6): 2639—47.
  26. Holmes J.M., Zhang S., Leske D.A., Lanier W.L. Metabolic acidosis-induced retinopathy in the neonatal rat. Invest. Ophthalmol. Vis. Sci. 1999; 40 (3): 804—9.
  27. Floyd B.N., Leske D.A., Wren S.M., Mookadam M., Fautsch M.P., Holmes JM. Differences between rat strains in models of retinopathy of prematurity. Mol. Vis. 2005; 11: 524—30.
  28. Zhang W., Ito Y., Berlin E., Roberts R., Berkowitz B.A. Role of hypoxia during normal retinal vessel development and in experimental retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2003; 44 (7): 3119—23.
  29. Wijngaarden van P., Brereton M.P., Coster D.J., Williams K.A. Genetic Influences on Susceptibility to Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2007; 48 (4): 1761—6.
  30. Akula J.D., Mocko J.A., Benador I.Y., Hansen R.M., Favazza T.L., Vyhovsky T.C. et al. The neurovascular relation in oxygen-induced retinopathy. Mol. Vis. 2008; 14: 2499—508.
  31. Barnett JM., McCollum G.W., Penn J.S. Role of cytosolic phospholipase A2 in retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 2010; 51 (2): 1136—42.
  32. Budd S., Byfield G., Martiniuk D., Geisen P., Hartnett M.E. Reduction in endothelial tip cell filopodia corresponds to reduced intravitreous but not intraretinal vascularization in a model of ROP. Exp. Eye. Res. 2009; 89 (5): 718—27.
  33. Budd S.J., Hartnett M.E. Increased angiogenic factors during avascular retina prior to neovascularization in ROP model. Arch. Ophthalmol. 2010; 128 (5): 589—95.
  34. Hartmann J.S., Thompson H., Wang H., Kanekar S., Huang W., Budd S.J. et al. Expression of vascular endothelial growth factor and pigment epithelial-derived factor in a rat model of retinopathy of prematurity. Mol. Vis. 2011; 17: 1577—87.
  35. Leske D.A., Wu J., Fautsch M.P., Karge rR.A., Berdahl J.P., Lanier W.L. et al. The role of VEGF and IGF-1 in a hypercarbic oxygen-induced retinopathy rat model of ROP. Mol. Vis. 2004; 10: 43—50.
  36. Wilkinson-Berka J.L., Babic S., De Gooyer T., Stitt A.W., Jaworski K., Ong L.G. et al. Inhibition of platelet-derived growth factor promotes pericyte loss and angiogenesis in ischemic retinopathy. Am. J. Pathol. 2004; 164 (4): 1263—73.
  37. Basu A., Menicucci G., Maestas J., Das A., McGuire P. Plasminogen Activator inhibitor-1 (PAI-1) facilitates retinal angiogenesis in a model of oxygen-induced retinopathy. Invest. Ophthalmol. Vis. Sci. 2009; 50 (10): 4974—81.
  38. Tawfik A., Sanders T., Kahoo K., Akeel S., Elmarakby A., Al-Shabrawey M. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest. Ophthalmol. Vis. Sci. 2009; 50 (2): 878—84.
  39. Tian X.F., Xia X.B., Xu H.Z., Xiong S.Q., Jiang J. Caveolin-1 expression regulates blood-retinal barrier permeability and retinal neovascularization in oxygen-induced retinopathy. Clin. Experiment. Ophthalmol. 2012; 40 (1): 58—66.
  40. Akula J.D., Mocko J.A., Moskowitz A., Hansen R.M., Fulton A.B. The Oscillatory potentials of the dark-adapted electroretinogram in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (12): 5788—97.
  41. Nakamura S., Imai S., Ogishima H., Tsuruma K., Shimazawa M., Hara H. Morphological and functional changes in the retina after chronic oxygen-induced retinopathy. PLoS. One. 2012; 7 (2): e32 167.
  42. Berkowitz B.A., Bissig D., Bergman D., Bercea E., Kasturi VK., Roberts R. Intraretinal calcium channels and retinal morbidity in experimental retinopathy of prematurity. Mol. Vis. 2011; 17: 2516—26.
  43. Shao Z., Dorfman A.L., Seshadri S., Djavari M., Kermorvant-Duchemin E., Sennlaub F. et al. Choroidal Involution Is a Key Component of Oxygen-Induced Retinopathy. Invest. Ophthalmol. Vis. Sci. 2011; 52 (9): 6238—48.
  44. Hardy P., Dumont I., Bhattacharya M., Hou X., Lachapelle P., Varma D.R. et al. Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Cardiovasc. Res. 2000; 47 (3): 489—509.
  45. Akula J.D., Hansen R.M., Martinez-Perez M.E., Fulton A.B. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (9): 4351—9.
  46. Fulton A.B., Akula J.D., Mocko J.A., Hansen R.M., Benador I.Y., Beck S.C. et al. Retinal degenerative and hypoxic ischemic disease. Docum. Ophthalmol. 2009; 118 (1): 55—61.
  47. Zhang Y., Stone J. Role of astrocytes in the control of developing retinal vessels. Invest. Ophthalmol. Vis. Sci. 1997; 38 (9): 1653—66.

Copyright (c) 2014 Eco-Vector


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies