Comparative effectiveness of optical and optical-pharmacological treatment for progressive myopia in children

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The rapid rise in myopia prevalence necessitates a comprehensive, multifactorial treatment approach. At the same time, there is a lack of long-term clinical studies evaluating the impact of spectacles with lenses containing rings of highly aspherical microlenses and optical-pharmacological treatment (tropicamide + phenylephrine) on accommodation and myopia progression in children.

AIM: This trial aimed to compare the effects of optical correction and optical–pharmacological treatment on accommodative function and myopia progression in children.

METHODS: A single-center, randomized, controlled, open-label clinical trial was conducted. Participants were assigned to 2 groups according to treatment modality for progressive myopia. Group 1 received optical correction with spectacles using lenses with highly aspherical microlenses (Stellest). Children in group 2 received optical–pharmacological treatment: one month after starting spectacle wear, they additionally used eye drops containing 0.8% tropicamide and 5% phenylephrine. The drug was instilled once nightly for 1 month, and the course was repeated every 3 months (a total of 4 courses per year). Outcomes included changes in refraction, accommodative function, axial length, and choroidal thickness during treatment.

RESULTS: The annual myopia progression rate decreased significantly in both groups: from 0.98 ± 0.25 to 0.03 ± 0.35 D in group 1 and from 1.18 ± 0.60 to 0.15 ± 0.23 D in group 2 (p < 0.01). In group 2, objective binocular and monocular accommodative responses increased significantly at month 12 of treatment relative to baseline by 0.21 ± 0.56 D and 0.19 ± 0.53 D, respectively (p < 0.01), whereas no change was observed in group 1. The amplitude of accommodation in group 2 rose by 0.52 ± 2.34 D (p < 0.01); in group 1, the change was minimal (a nonsignificant upward trend of 0.02 D). Choroidal thickness increased significantly over time in both groups: by 11.7 ± 2.8 μm in group 1 and by 12.5 ± 19.6 μm in group 2 (p < 0.01).

CONCLUSION: Optical–pharmacological treatment with phenylephrine and tropicamide optimizes accommodative tone and enhances the accommodative response and stability of accommodative mechanisms compared with optical correction alone. The addition of tropicamide and phenylephrine to optical correction with lenses containing highly aspherical microlenses does not reduce choroidal thickness. Furthermore, the presence of accommodative dysfunction in children with myopia supports the clinical rationale for optical–pharmacologic therapy.

About the authors

Svetlana E. Kondratova

Petrovsky National Research Center of Surgery

Author for correspondence.
Email: svetlana26.03@mail.ru
ORCID iD: 0000-0002-6522-5310
SPIN-code: 9095-2169

MD

Russian Federation, Moscow

Elena P. Tarutta

National Medical Research Center of Eye Diseases named after Helmholtz

Email: elenatarutta@mail.ru
ORCID iD: 0000-0002-8864-4518
SPIN-code: 8828-5150

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Moscow

Natalia A. Tarasova

National Medical Research Center of Eye Diseases named after Helmholtz

Email: tar221@yandex.ru
ORCID iD: 0000-0002-3164-4306
SPIN-code: 3056-4316

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Sergey V. Milash

National Medical Research Center of Eye Diseases named after Helmholtz

Email: sergey_milash@yahoo.com
ORCID iD: 0000-0002-3553-9896
SPIN-code: 5224-4319

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Wang J, Li Y, Musch DC, et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmology. 2021;139(3):293–300. doi: 10.1001/jamaophthalmol.2020.6239 EDN: FZPEYD
  2. Klaver CCW, Polling JR, Enthoven CA. 2020 as the Year of Quarantine Myopia. JAMA Ophthalmology. 2021;139(3):300–301. doi: 10.1001/jamaophthalmol.2020.6231 EDN: KEUDJY
  3. Logan NS, Bullimore MA. Optical Interventions for Myopia Control. Eye. 2023;38(3):455–463. doi: 10.1038/s41433-023-02723-5 EDN: HZNVNM
  4. Smith EL. Optical Treatment Strategies to Slow Myopia Progression: Effects of the Visual Extent of the Optical Treatment Zone. Experimental Eye Research. 2013;114:77–88. doi: 10.1016/j.exer.2012.11.019
  5. Li X, Huang Y, Yin Z, et al. Myopia Control Efficacy of Spectacle Lenses With Aspherical Lenslets: Results of a 3-Year Follow-Up Study. American Journal of Ophthalmology. 2023;253:160–168. doi: 10.1016/j.ajo.2023.03.030 EDN: PBBUJT
  6. Тарутта Е.П., Проскурина О.В., Маркосян Г.А., и др. Стратегически ориентированная концепция оптической профилактики возникновения и прогрессирования миопии // Российский офтальмологический журнал. 2020. Т. 13, № 4. С. 7–16. | Tarutta EP, Proskurina OV, Markossian GA, et al. A strategically oriented conception of optical prevention of myopia onset and progression. Russian Ophthalmological Journal. 2020;13(4):7–16. doi: 10.21516/2072-0076-2020-13-4-7-16 EDN: NVXPXF
  7. Huang J, Wen D, Wang Q, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology. 2016;123(4):697–708. doi: 10.1016/j.ophtha.2015.11.010
  8. Wildsoet CF, Chia A, Cho P, et al. IMI – Interventions for Controlling Myopia Onset and Progression Report. Investigative Opthalmology & Visual Science. 2019;60(3):M106. doi: 10.1167/iovs.18-25958 EDN: TSVABC
  9. Eppenberger LS, Grzybowski A, Schmetterer L, Ang M. Myopia Control: Are We Ready for an Evidence Based Approach? Ophthalmology and Therapy. 2024;13(6):1453–1477. doi: 10.1007/s40123-024-00951-w EDN: QGWWTN
  10. Guo H, Li X, Zhang X, et al. Comparing the Effects of Highly Aspherical Lenslets Versus Defocus Incorporated Multiple Segment Spectacle Lenses on Myopia Control. Scientific Reports. 2023;13(1):3048. doi: 10.1038/s41598-023-30157-2 EDN: RELOWF
  11. Agyekum S, Chan PP, Adjei PE, et al. Cost-Effectiveness Analysis of Myopia Progression Interventions in Children. JAMA Network Open. 2023;6(11):e2340986. doi: 10.1001/jamanetworkopen.2023.40986 EDN: JCPYSN
  12. Gantes-Nuñez J, Jaskulski M, López-Gil N, Kollbaum PS. Optical characterisation of two novel myopia control spectacle lenses. Ophthalmic and Physiological Optics. 2023;43(3):388–401. doi: 10.1111/opo.13098 EDN: FPZWCJ
  13. Li X, Ding C, Li Y, et al. Influence of Lenslet Configuration on Short-Term Visual Performance in Myopia Control Spectacle Lenses. Frontiers in Neuroscience. 2021;15:. doi: 10.3389/fnins.2021.667329 EDN: MSIWBL
  14. Lupon M, Nolla C, Cardona G. New Designs of Spectacle Lenses for the Control of Myopia Progression: A Scoping Review. Journal of Clinical Medicine. 2024;13(4):1157. doi: 10.3390/jcm13041157 EDN: QMOLNB
  15. Lanca C, Repka MX, Grzybowski A. Topical Review: Studies on Management of Myopia Progression from 2019 to 2021. Optometry and Vision Science. 2022;100(1):23–30. doi: 10.1097/OPX.0000000000001947 EDN: FVQRFM
  16. Yue PC, Kong L, Zhang T, Qiao ZT. Research Progress on the Application of Specially Lense Related to Myopia Prevention and Control. Zhonghua Yan Ke Za Zhi. 2024;60(4):384–391. doi: 10.3760/cma.j.cn112142-202230913-00098
  17. Zhang XJ, Zaabaar E, French AN, et al. Advances in Myopia Control Strategies for Children. British Journal of Ophthalmology. 2024;109(2):165–176. doi: 10.1136/bjo-2023-323887
  18. Миопия: клинические рекомендации. Москва: Министерство здравоохранения Российской Федерации, 2024. | Myopia: clinical guidelines. Moscow: Ministry of Health of the Russian Federation; 2024. Available from: http://disuria.ru/_ld/15/1568_kr24H52p1MZ.pdf (In Russ.)
  19. Tse DY, Lam CS, Guggenheim JA, et al. Simultaneous Defocus Integration during Refractive Development. Investigative Opthalmology & Visual Science. 2007;48(12):5352. doi: 10.1167/iovs.07-0383
  20. Arumugam B, Hung LF, To C, et al. The Effects of Simultaneous Dual Focus Lenses on Refractive Development in Infant Monkeys. Investigative Opthalmology & Visual Science. 2014;55(11):7423. doi: 10.1167/iovs.14-14250
  21. Arumugam B, Hung LF, To CH, et al. The Effects of the Relative Strength of Simultaneous Competing Defocus Signals on Emmetropization in Infant Rhesus Monkeys. Investigative Opthalmology & Visual Science. 2016;57(10):3949. doi: 10.1167/iovs.16-19704
  22. Benavente-Pérez A, Nour A, Troilo D. Axial Eye Growth and Refractive Error Development Can be Modified by Exposing the Peripheral Retina to Relative Myopic or Hyperopic Defocus. Invest Ophthalmol Vis Sci. 2014;55(10):6765–6773.
  23. Bao J, Yang A, Huang Y, et al. One-year Myopia Control Efficacy of Spectacle Lenses With Aspherical Lenslets. British Journal of Ophthalmology. 2021;106(8):1171–1176. doi: 10.1136/bjophthalmol-2020-318367
  24. Huang Y, Li X, Wu J, et al. Effect of Spectacle Lenses With Aspherical Lenslets on Choroidal Thickness in Myopic Children: A 2-year Randomised Clinical Trial. British Journal of Ophthalmology. 2022;107(12):1806–1811. doi: 10.1136/bjo-2022-321815 EDN: JBJBXM
  25. Huang Y, Li X, Zhuo Z, et al. Effect of Spectacle Lenses With Aspherical Lenslets on Choroidal Thickness in Myopic Children: A 3-year Follow-Up Study. Eye and Vision. 2024;11(1):16. doi: 10.1186/s40662-024-00383-4 EDN: NPDJBT
  26. Li X, Huang Y, Liu C, et al. Myopia Control Efficacy of Spectacle Lenses With Highly Aspherical Lenslets: Results of a 5-year Follow-Up Study. Eye and Vision. 2025;12(1). doi: 10.1186/s40662-025-00427-3 EDN: DPWZMT
  27. Проскурина О.В., Тарутта Е.П., Тарасова Н.А., и др. Годовые результаты применения очковых линз с встроенными кольцами высокоасферичных микролинз Stellest™ для контроля миопии // Российская педиатрическая офтальмология. 2023. Т. 18, № 4. С. 191–203. | Proskurina OV, Tarutta EP, Tarasova NA, et al. Аnnual Results of the Use of Spectacle Lenses With Embedded Rings of High-Spherical Microlenses Stellest™ for the Control of Myopia. Russian Pediatric Ophthalmology. 2023;18(4):191–203. doi: 10.17816/rpoj567973 EDN: QZANVF
  28. Тарутта Е.П., Проскурина О.В., Тарасова Н.А., и др. Влияние полугодового ношения очков с линзами Stellest на динамику рефракции при прогрессирующей миопии у детей. В кн.: Сборник тезисов Российского общенационального офтальмологического форума. Москва: Издательство «Апрель», 2022. Т. 2. С. 551–553. | Tarutta EP, Proskurina OV, Tarasova NA, et al. The Effect of Six-Month Wearing of Glasses With Stellest Lenses on the Dynamics of Refraction in Progressive Myopia in Children. In: Proceedings of the Russian National Ophthalmological Forum. Moscow: Publishing house “Aprel’”; 2022. Vol. 2. P. 551–553. (In Russ.) EDN: UTOVRJ
  29. Huang Y, Li X, Wang C, et al. Visual Acuity, Near Phoria and Accommodation in Myopic Children Using Spectacle Lenses With Aspherical Lenslets: Results from a Randomized Clinical Trial. Eye and Vision. 2022;9(1):1–8. doi: 10.1186/s40662-022-00304-3 EDN: SMAZTW
  30. Аветисов Э.С. Близорукость. Москва: Медицина, 1999. | Avetisov ES. Myopia. Moscow: Meditsina; 1999. Available from: https://djvu.online/file/ (In Russ.)
  31. Тарутта Е.П., Иомдина Е.Н., Тарасова Н.А., и др. Комплексный подход к профилактике и лечению прогрессирующей миопии у школьников // РМЖ. Клиническая офтальмология. 2018. Т. 18, № 2. С. 70–76. | Tarutta EP, Iomdina EN, Tarasova NA, et al. Complex Approach to the Prevention and Treatment of Progressive Myopia in School Children. Clinical Ophthalmology. 2018;18(2):70–76. doi: 10.21689/2311-7729-2018-18-2-70-76 EDN: OTMVBH
  32. Shahsuvaryan ML. Atropine: Updates on myopia pharmacotherapy. Taiwan Journal of Ophthalmology. 2022;14(2):225–229. doi: 10.4103/tjo.TJO-D-22-00060
  33. Pérez-Flores I, Macías-Murelaga B, Flores IP, et al; Multicenter Group of Atropine Treatment for Myopia Control (GTAM). Age-Related Results over 2 years of the Multicenter Spanish Study of Atropine 0.01% in Childhood Myopia Progression. Scientific Reports. 2023;13(1):16310. doi: 10.1038/s41598-023-43569-x EDN: NHAFXI
  34. Wei XL, Dang KR, Hu KK, et al. Efficacy and Safety of Atropine at Different Concentrations in Prevention of Myopia Progression in Asian children: A Systematic Review and Meta-analysis of Randomized Clinical Trials. International Journal of Ophthalmology. 2023;16(8):1326–1336. doi: 10.18240/ijo.2023.08.20 EDN: WAFGSM
  35. Bullimore MA, Lee SSY, Schmid KL, et al. IMI—Onset and Progression of Myopia in Young Adults. Investigative Opthalmology & Visual Science. 2023;64(6):2. doi: 10.1167/iovs.64.6.2 EDN: BODMOZ
  36. Simonaviciute D, Grzybowski A, Lanca C, et al. The Effectiveness and Tolerability of Atropine Eye Drops for Myopia Control in Non-Asian Regions. Journal of Clinical Medicine. 2023;12(6):2314. doi: 10.3390/jcm12062314 EDN: LTHUFS
  37. Loughman J, Flitcroft DI. The Acceptability and Visual Impact of 0.01% Atropine in a Caucasian Population. British Journal of Ophthalmology. 2016;100(11):1525–1529. doi: 10.1136/bjophthalmol-2015-307861
  38. Zhao Y, Yang B, Li X, Ma W, et al. Efficacy of Combining Highly Aspherical Lenslets Spectacles With 0.01% Atropine Eye Drops in Myopia Control. Sichuan Da Xue Xue Bao Yi Xue Ban. 2024;55(5):1280–1287. doi: 10.12182/20240960109
  39. Tan Q, Ng ALK, Cheng GPM, et al. Combined 0.01% atropine with orthokeratology in childhood myopia control (AOK) study: A 2-year randomized clinical trial. Contact Lens and Anterior Eye. 2023;46(1):101723. doi: 10.1016/j.clae.2022.101723EDN: LQMCZR
  40. Banderet LE, Jobe JB. Effects of Atropine Upon Cognitive Performance and Subjective Variables. Natick: US Army Research Institute of Environmental Medicine; 1984. doi: 10.21236/ADA163211
  41. Аветисов С.Э., Фисенко В.П., Журавлёв А.С., Аветисов К.С. Применение атропина для контроля прогрессирования миопии // Вестник офтальмологии. 2018. Т. 134, № 4. С. 84–90. | Avetisov SE, Fisenko VP, Zhuravlev AS, Avetisov KS. Atropine use for the prevention of myopia progression. Russian Annals of Ophthalmology. 2018;134(4):84–90. doi: 10.17116/oftalma201813404184 EDN: XWPZOX
  42. Сидоренко Е.И., Маркова Е.Ю. Применение ирифрина у детей с близорукостью и спазмом аккомодации // Российская педиатрическая офтальмология. 2007. № 1. С. 24–26. | Sidorenko EI, Markova EYu. Use of Irifrin in Children with Myopia and Accommodation Spasm. Russian Pediatric Ophthalmology. 2007;(1):24–26. (In Russ.)
  43. Заяни Н., Воронцова Т.Н., Бржеский В.В. Комбинированная терапия спазма аккомодации у детей // Офтальмологические ведомости. 2011. Т. 4, № 1. С. 23–27. | Zayani N, Vorontsova TN, Brzhesky VV. Combined Therapy of Accommodation Spasm in Children. Ophthalmology Reports. 2011;4(1):23–27. EDN: NUJMHD
  44. Воронцова Т.Н. Результаты медикаментозной терапии привычно-избыточного напряжения аккомодации у детей и студентов // Российский офтальмологический журнал. 2016. Т. 9, № 2. С. 18–21. | Vorontsova TN. Results of Medication Therapy of Habitually Excessive Tension of Accommodation in Children and Higher-School Students. Russian Ophthalmological Journal. 2016;9(2):18–21. EDN: WEFIIR
  45. Патент РФ на изобретение № 2023105415/ 09.03.2023. Бюл. № 35. Тарутта Е.П., Лужнов П.В., Тарасова Н.А., и др. Способ диагностики неустойчивости аккомодации. | Patent RUS No. 2023105415/ 09.03.20023. Byul. No. 35. Tarutta EP, Luzhnov PV, Tarasova NA, et al. Method of Diagnosing Instability of Accommodation. Available from: https://www.elibrary.ru/download/elibrary_59918102_32304665.PDF EDN: ZQOLJZ
  46. Тарутта Е.П., Лужнов П.В., Тарасова Н.А., и др. Новый способ количественной оценки параметров аккомодации на основе объективной динамической аккомодометрии // Российский офтальмологический журнал. 2024. Т. 17, № 2. С. 38–46. | Tarutta EP, Luzhnov PV, Tarasova NA, et al. A New Method for Quantifying Accommodation Parameters Based on Objective Dynamic Accommodometry. Russian Ophthalmological Journal. 2024;17(2):38–46. doi: 10.21516/2072-0076-2024-17-2-38-46 EDN: AAXBHM
  47. Тарутта Е.П., Кондратова С.Э. Объективная оценка параметров и устойчивости аккомодации на фоне оптической и оптико-фармакологической терапии прогрессирующей миопии у детей // Российский офтальмологический журнал. 2024. Т. 18, № 1. С. 61–67. | Tarutta EP, Kondratova SE. Objective Assessment of the Parameters and Stability of Accommodation After Optical and Opto-Pharmacological Therapy of Progressive Myopia in Children. Russian Ophthalmological Journal. 2025;18(1):61–67. doi: 10.21516/2072-0076-2025-18-1-61-67 EDN: XFFYPQ
  48. Kara N, Demircan A, Karatas G, et al. Effects of Two Commonly Used Mydriatics on Choroidal Thickness: Direct and Crossover Effects. Journal of Ocular Pharmacology and Therapeutics. 2014;30(4):366–370. doi: 10.1089/jop.2013.0093
  49. Yeung SC, Park JY, Park D, et al. The Effect of Systemic and Topical Ophthalmic Medications on Choroidal Thickness: A review. British Journal of Clinical Pharmacology. 2022;88(6):2673–2685. doi: 10.1111/bcp.15237 EDN: YMAKMK
  50. Iovino C, Chhablani J, Rasheed MA, et al. Effects of Different Mydriatics on the Choroidal Vascularity in Healthy Subjects. Eye. 2020;35(3):913–918. doi: 10.1038/s41433-020-0995-9 EDN: GZZSKP
  51. Махова М.В. Анализ лечебного воздействия препарата Мидримакс® на перенапряжение аккомодации у пациентов с ортокератологической коррекцией // Российский офтальмологический журнал. 2022. Т. 15, № 1. С. 25–31. | Makhova MV. Analysis of the Therapeutic Effect of Midrimax® on Accommodation Overstrain in Patients With Orthokeratological Correction. Russian Ophthalmological Journal. 2022;15(1):25–31. doi: 10.21516/2072-0076-2022-15-1-25-31 EDN: CZGFLR
  52. Тарутта Е.П., Проскурина О.В., Тарасова Н.А., и др. Дизайн исследования и ближайшие результаты комбинированного оптико-фармакологического лечения прогрессирующей миопии у детей // Российская педиатрическая офтальмология. 2023. Т. 18, № 3. С. 155–161. | Tarutta EP, Proskurina OV, Tarasova NA, et al. Study Design and Immediate Results of Combined Opto-Pharmacological Treatment of Progressive Myopia in Children. Russian Pediatric Ophthalmology. 2023;18(3):155–161. doi: 10.17816/rpoj516533 EDN: EROQYM
  53. Zadnik K, Sinnott LT, Cotter SA, et al. Prediction of Juvenile-Onset Myopia. JAMA Ophthalmology. 2015;133(6):683. doi: 10.1001/jamaophthalmol.2015.0471

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».