Correction of peripheral myopic defocus with HAL spectacle lenses
- Authors: Tarutta E.P.1, Tarasova N.A.1, Proskurina O.V.1, Kondratova S.E.2
-
Affiliations:
- Helmholtz National Medical Research Center of Eye Diseases
- Petrovsky National Research Centre of Surgery
- Issue: Vol 19, No 4 (2024)
- Pages: 219-228
- Section: Original study article
- URL: https://journals.rcsi.science/1993-1859/article/view/281629
- DOI: https://doi.org/10.17816/rpoj636257
- ID: 281629
Cite item
Abstract
Current methods to slow myopia progression based on the theory of peripheral defocus have shown their efficacy when used as spectacle, contact, and orthokeratology lenses. Spectacle lenses with highly aspherical microlenslets (Stellest®) were introduced into clinical practice in 2020, and their efficacy was rated highly in different studies.
AIM: To investigate peripheral defocus imposed by Stellest® spectacle lenses in myopic children.
MATERIAL AND METHODS: Peripheral refraction (PR) was evaluated in 42 children (84 eyes) with low-to-moderate myopia. Patients of Group 1 (42 eyes) were examined under cycloplegic conditions, without correction and with HAL spectacle lenses, in the primary position and different directions of gaze, 15° and 30° temporally (T) and nasally (N) from the fovea. Patients of Group 2 (42 eyes) were examined under mydriatic conditions, without correction and with HAL spectacle lenses, 5°, 10°, 15° nasally and temporally from the fovea, in the different directions of gaze. PR was measured using the Grand Seiko WAM-5500 open-field binocular autorefractor. To calculate peripheral defocus, central (axial) refraction was subtracted from the peripheral spherical equivalent taking into account the +/− sign.
RESULTS: HAL spectacle lenses reduced hyperopic defocus and imposed a myopic one in all tested areas of the near retinal periphery; the differences at N5 and N10 points were statistically significant (р < 0.05). At N15 point ocular movements imposed myopic defocus of −0.26 D (р < 0.05). There is also a trend towards a decrease in hyperopic defocus at T15 and N30 points.
CONCLUSION: The first study of peripheral refraction with HAL spectacle lenses (Stellest®) helped demonstrate that the lenses imposed myopic defocus on the retinal periphery, with the greatest defocus on the near nasal periphery.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Elena P. Tarutta
Helmholtz National Medical Research Center of Eye Diseases
Email: elenatarutta@mail.ru
ORCID iD: 0000-0002-8864-4518
MD, Dr. Sci. (Medicine), Рrofessor
Russian Federation, MoscowNatalia A. Tarasova
Helmholtz National Medical Research Center of Eye Diseases
Author for correspondence.
Email: tar221@yandex.ru
ORCID iD: 0000-0002-3164-4306
SPIN-code: 3056-4316
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowOlga V. Proskurina
Helmholtz National Medical Research Center of Eye Diseases
Email: proskourina@mail.ru
ORCID iD: 0000-0002-2496-2533
SPIN-code: 1057-5866
MD, Dr. Sci. (Medicine)
Russian Federation, Moscow
Svetlana E. Kondratova
Petrovsky National Research Centre of Surgery
Email: svetlana26.03@mail.ru
ORCID iD: 0000-0002-6522-5310
SPIN-code: 9095-2169
MD, Ophthalmologist of the Research Institute of Pediatrics and Child Health Protection
Russian Federation, MoscowReferences
- Benavente-Perez A, Nour A, Troilo D. The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets. Invest Ophthalmol Vis Sci. 2012;53(10):6479–6487. doi: 10.1167/iovs.12-9822
- Delshad S, Collins MJ, Read SA, Vincent SJ. The time course of the onset and recovery of axial length changes in response to imposed defocus. Sci Rep. 2020;10(1):8322. doi: 10.1038/s41598-020-65151-5
- Benavente-Perez A, Nour A, Troilo D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus. Invest Ophthalmol Vis Sci. 2014;55(10):6765–6773. doi: 10.1167/iovs.14-14524
- Smith EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res. 2009;49(19):2386–2392. doi: 10.1016/j.visres.2009.07.011
- Norton TT, Siegwart JT, Amedo AO. Effectiveness of hyperopic defocus, minimal defocus, or myopic defocus in competition with a myopiagenic stimulus in tree shrew eyes. Invest Ophthalmol Vis Sci. 2006;47(11):4687–4699. doi: 10.1167/iovs.05-1369
- Lagace JP. The theory of change of the retinal peripheral defocus and myopia progression. Vestnik optometrii. 2011;(1):48–57. (In Russ.)
- Chamberlain P, Peixoto-de-Matos SC, Logan NS, et al. A 3-year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci. 2019;96(8):556–567. doi: 10.1097/OPX.0000000000001410
- Li Q, Fang F. Advances and challenges of soft contact lens design for myopia control. Appl Opt. 2019;58(7):1639–1656. doi: 10.1364/AO.58.001639
- Gonzalez-Meijome JM, Faria-Ribeiro MA, Lopes-Ferreira DP, et al. Changes in peripheral refractive profile after orthokeratology for different degrees of myopia. Curr Eye Res. 2016;41(2):199–207. doi: 10.3109/02713683.2015.1009634
- Lam CS, Tang WC, Tse DY, et al. Defocus incorporated soft contact (DISC) lens slows myopia progression in Hong Kong chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol. 2014;98(1):40–45. doi: 10.1136/bjophthalmol-2013-303914
- Smith EL. Prentice award lecture 2010: a case for peripheral optical treatment strategies for myopia. Optom Vis Sci. 2011;88(9):1029–1044. doi: 10.1097/OPX.0b013e3182279cfa
- Tarutta EP, Proskurina OV, Markossian GA, et al. A strategically oriented conception of optical prevention of myopia onset and progression. Russian Ophihalmological Journal. 2020;13(4):7–16. EDN: NVXPXF doi: 10.21516/2072-0076-2020-13-4-7-16
- Lin Z, Martinez A, Chen X, et al. Peripheral defocus with single-vision spectacle lenses in myоpic children. Optom Vis Sci. 2010;87(1):4–9. doi: 10.1097/OPX.0b013e3181c078f1
- Atchison DA, Mathur A, Varnas SR. Visual performance with lenses correcting peripheral refractive errors. Optom Vis Sci. 2013;90(11):1304–1311. doi: 10.1097/OPX.0000000000000033
- Lam CS, Tang WC, Tse DY, et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104(3):363–368. doi: 10.1136/bjophthalmol-2018-313739
- Bao J, Yang A, Huang Y, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol. 2022;106(8):1171–1176. doi: 10.1136/bjophthalmol-2020-318367
- Huang Y, Zhang J, Yin Z, et al. Effects of spectacle lenses with aspherical lenslets on peripheral eye length and peripheral refraction in myopic children: a 2-year randomized clinical trial. Transl Vis Sci Technol. 2023;12(11):15. doi: 10.1167/tvst.12.11.15
- Zhang HY, Lam CS, Tang WC, et al. Defocus incorporated multiple segments spectacle lenses changed the relative peripheral refraction: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2020;61(5):53. doi: 10.1167/iovs.61.5.53
- Fedtke C, Ehrmann K, Bakaraju RC. Peripheral refraction and spherical aberration profiles with single vision, bifocal and multifocal soft contact lenses. J Optom. 2020;13(1):15–28. doi: 10.1016/j.optom. 2018.11.002
- Tarutta EP, Harutyunyan SG. The impact of orthokeratologic contact lenses on spherical aberration of the optical system of the eye. Russian Ophihalmological Journal. 2018;11(2):17–21. EDN: UQDYLL doi: 10.21516/2072-0076-2018-11-2-17-21
- Tarutta EP, Tarasova NA, Milash SV, et al. The influence of different means of myopia correction on peripheral refraction depending on the direction of gaze. Russian Annals of ophthalmology = Vestnik oftalmologii. 2019;135(4):60–69. EDN: OFMKAT doi: 10.17116/oftalma201913504160
- Hiraoka T, Matsumoto Y, Okamoto F, et al. Corneal higher-order aberrations induced by overnight orthokeratology. Am J Ophthalmol. 2005;139(3):429–436. doi: 10.1016/j.ajo.2004.10.006
- Yoo YS, Kim DY, Byun YS, et al. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Heliyon. 2020;6(4):e03642. doi: 10.1016/j.heliyon.2020.e03642
- Si JK, Tang K, Bi HS, et al. Orthokeratology for myopia control: a meta-analysis. Optom Vis Sci. 2015;92(3):252–257. doi: 10.1097/OPX.0000000000000505
- Lee Y, Wang J, Chiu C. Effect of orthokeratology on myopia progression: twelve-year results of a retrospective cohort study. BMC Ophthalmol. 2017;17(1):243. doi: 10.1186/s12886-017-0639-4
- Li SM, Kang MT, Wu SS, et al. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in schoolaged children: a meta-analysis. Ophthalmic Physiol Opt. 2017;37(1):51–59. doi: 10.1111/opo.12332
- Tarutta EP, Tarasova NA, Proskurina OV, et al. Peripheral defocus of myopic eyes corrected with perifocal-m glasses, monofocal glasses, and soft contact lenses. Russian Ophihalmological Journal. 2018;11(4):36–42. EDN: YPHUTJ doi: 10.21516/2072-0076-2018-11-4-36-41
- Queirós A, Amorim-de-Sousa A, Lopes-Ferreira D, et al. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis (Lond). 2018;5:12. doi: 10.1186/s40662-018-0106-1
- Neroev VV, Tarutta EP, Khandzhyan AT, et al. Difference in profile of peripheral defocus after orthokeratology and eximer laser correction of myopia. Russian Ophihalmological Journal. 2017;10(1):31–35. EDN: YFQCEX doi: 10.21516/2072-0076-2017-10-1-31-35
- Khodzhabekyan NV, Khandzhyan AT, Tarutta EP, et al. Changes of high order aberrations after photorefractive keratectomy (PRK) and femtolasik. Russian Ophihalmological Journal. 2022;15(1):99–104. EDN: JXUQQV doi: 10.21516/2072-0076-2022-15-1-99-104
- Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi: 10.1016/j.ophtha.2016.01.006
- Wolffsohn JS, Calossi A, Cho P, et al. Global trends in myopia management attitudes and strategies in clinical practice: 2019 update. Cont Lens Anterior Eye. 2020;43(1):9–17. doi: 10.1016/j.clae.2019.11.002
- Tarutta EP, Proskurina OV, Milash SV, et al. Peripheral defocus induced by “Perifocal-M” spectacles and myopia progression in children. Russian pediatric ophthalmology = Rossiyskaya pediatricheskaya oftal’mologiya. 2015;10(2):33–37. EDN: TSKREB
- Ibatulin RA, Proskurina OV, Tarutta EP. Multi-factoral mechanisms of therapeutic effect of perifocal spectacles (Perifocal-M) on progressive myopia in children. Ophthalmology. 2018;15(4):433–438. EDN: TLNFSK doi: 10.18008/1816-5095-2018-4-433-438
- Tarutta EP, Proskurina OV, Tarasova NA, et al. Myopia predictors as a starting point for active prevention of myopia development. Russian Ophihalmological Journal. 2018;11(3):107–112. EDN: RWPLJZ doi: 10.21516/2072-0076-2018-11-3-107-112
- Tarutta EP, Proskurina OV, Tarasova NA, Markosyan GA. Analysis of risk factors that cause myopia in pre-school children and primary school students. Health Risk Analysis. 2019;(3):26–33. EDN: XZMFZQ doi: 10.21668/health.risk/2019.3.03
- Tarutta EP, Proskurina OV, Tarasova NA, et al. Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia. Russian Annals of ophthalmology = Vestnik oftalmologii. 2019;135(5):46–53. EDN: HPZNZC doi: 10.17116/oftalma201913505146
- Patent RUS № RU 2367333 C1. Byul. № 26. Tarutta EP, Iomdina EN, Kvaratskhelia NG. Method of studying peripheral refraction. (In Russ.) Available from: http://www.freepatent.ru/patents/2367333. Accessed: 15.10.2024.
- Clinical guidelines. Myopia. Approved by the Ministry of Health of the Russian Federation. Association of Ophthalmologists; 2017. 46 р. (In Russ.)
- Proskurina OV, Tarutta EP, Tarasova NA, et al. Аnnual results of the use of spectacle lenses with embedded rings of high-spherical microlenses Stellest for the control of myopia. Russian pediatric ophthalmology. 2023;18(4):191–203. EDN: QZANVF doi: 10.17816/rpoj567973
- Proskurina OV, Tarutta EP, Tarasova NA, et al. Effect of Stellest spectacle lenses on the refractive dynamics of children with myopia. Results of observation during 1 year. Russian national ophthalmological forum. 2023;1:195–198. (In Russ.) EDN: LYSTOS
- Li X, Huang Y, Yin Z, et al. Myopia control efficacy of spectacle lenses with aspherical lenslets: results of a 3-year follow-up study. Am J Ophthalmol. 2023;253:160–168. doi: 10.1016/j.ajo.2023.03.030
- Guo H, Li X, Zhang X, et al. Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control. Sci Rep. 2023;13(1):3048. doi: 10.1038/s41598-023-30157-2
- Tarutta EP, Milash SV, Tarasova NA, et al. Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry. Russian Annals of ophthalmology.2014;130(6):44–49. EDN: THPQSJ
- Tarutta EP, Iomdina EN, Kvaratskhelia NG, Filinova OB. Method of peripheral eye refraction research. In: Russian National Ophthalmological Forum: proceedings of the scientific-practical conference with international participation. Moscow; 2008. Р. 582–586. (In Russ.)
Supplementary files
