Morphometric and functional features in children with pseudophakic myopia after congenital cataract extraction in infancy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

AIM: To investigate the morphometric parameters of the macular zone in children with pseudophakia and different refractive states after congenital cataract extraction in infancy and their correlations with vision parameters.

MATERIAL AND METHODS: Thirty children (49 eyes) who underwent bilateral cataract surgery with primary intraocular lens (IOL) implantation, with a median age at surgery of 7.94±2.70 (2–12) months, were identified. These children were divided into two groups: group 1 with target refraction (n=18, 21 eyes) and group 2 with pseudophakic myopia (n=14,28 eyes). All patients were examined with the Nidek RS-3000 Advance two optical coherence tomography.

RESULTS: A significant reduction was found in the morphometric parameters in group 2 relative to that in group 1: foveal thickness (253.11±27.84 and 266.42±21.52 μm), average inner macula thickness (307.64±30.9 and 330.14±28.29 μm) and average outer macula thickness (281.17±22.51 and 298.78±28.23 μm), central choroidal thickness (221.87±79.04 and 311.94±68.38 μm), macular volume (7.99±0.71 and 8.76±0.49 mm3), and foveal volume (0.19±0.02 и 0,21±0.02 mm3). This can be due to axial elongation (24.72±2.18 and 21.28±1.55 mm). The correlation between the best-corrected visual acuity (BCVA) and macular volume was moderate in pseudophakic children (r=0.418; p <0.01).

CONCLUSION: The data indicate an impairment of the macular zone formation in children with pseudophakic myopia which to a certain extent can explain the decrease in functional prognosis.

About the authors

Aleхandra S. Galkina

Helmholtz National Medical Research Center of Eye Diseases

Author for correspondence.
Email: alexandraugust1@gmail.com
ORCID iD: 0000-0003-3521-6381

graduate student

Russian Federation, Moscow

Lyudmila A. Katargina

Helmholtz National Medical Research Center of Eye Diseases

Email: katargina@igb.ru
ORCID iD: 0000-0002-4857-0374

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Tatiana B. Kruglova

Helmholtz National Medical Research Center of Eye Diseases

Email: krugtb@yandex.ru
ORCID iD: 0000-0003-4193-681X

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Naira S. Egiyan

Helmholtz National Medical Research Center of Eye Diseases

Email: nairadom@mail.ru
ORCID iD: 0000-0001-9906-4706

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

References

  1. Neroev VV. Invalidnost’ po zreniyu v Rossiiskoi Federatsii. Report at the 23rd Ophthalmological Congress «Belye nochi»: «Voprosy organizatsii oftal’mologicheskoi pomoshchi naseleniyu Rossiiskoi Federatsii. Po materialam dokladov za period 2013–2018 gg.»; 2017 May 29; St. Petersburg. Moscow, 2017. P. 156–184. Available from: http://avo-portal.ru/events/reports/item/450-doklad-neroeva-vv-invalidnost-po-zreniyu-v-rossiyskoy-federatsii. Accessed: 08.11.2022. (In Russ).
  2. Kruglova TB, Katargina LA, Egiyan NS, Arestova NN. Surgical tactics and peculiarities of intraocular correction in children of the first year of life with congenital cataract. Fyodorov Journal of Optalmic Surgery. 2018;1:13–18. (In Russ). doi: 10.25276/0235-4160-2018-1-13-18
  3. Zaidullin IS, Aznabaev RA. Primary artificial lens implantation in young children with the primary hyperplastic vitreos body. The Russian Annals of Ophtalmology. 2008;124(3):44–45. (In Russ).
  4. Lenhart PD, Lambert SR. Current management of infantile cataracts. Surv Ophthalmol. 2022;67(5):1476–1505. doi: 10.1016/j.survophthal.2022.03.005
  5. Solebo AL, Cumberland P, Rahi JS. British Isles Congenital Cataract Interest Group. 5-year outcomes after primary intraocular lens implantation in children aged 2 years or younger with congenital or infantile cataract: findings from the IoLunder2 prospective inception cohort study. Lancet Child Adolesc Health. 2018;2(12):863–871. doi: 10.1016/S2352-4642(18)30317-1
  6. Wilson ME, Trivedi RH, Weakley DR Jr., et al. Infant Aphakia Treatment Study Group. Globe Axial Length Growth at Age 10.5 Years in the Infant Aphakia Treatment Study. Am J Ophthalmol. 2020;216:147–155. doi: 10.1016/j.ajo.2020.04.010
  7. Khvatova AV, Kruglova TB, Fil’chikova LI. Klinicheskie osobennosti i patogeneticheskie mekhanizmy narusheniya zritel’nykh funktsii pri vrozhdennykh kataraktakh. In: Zritel’nye funktsii i ikh korrektsiya u detei. Moscow: Meditsina; 2005. (In Russ).
  8. Slyshalova NN, Shamshinova AM. Retinal bioelectrical activity in amblyopia. The Russian Annals of Ophtalmology. 2008;124(4):32–36. (In Russ).
  9. Al-Haddad C, Mehanna CJ, Ismail K. High-Definition Optical Coherence Tomography of the Macula in Deprivational Amblyopia. Ophthalmic Surg Lasers Imaging Retina. 2018;49(3):198–204. doi: 10.3928/23258160-20180221-08
  10. Wang J, Smith HA, Donaldson DL, et al. Macular structural characteristics in children with congenital and developmental cataracts. J AAPOS. 2014;18(5):417–422. doi: 10.1016/j.jaapos.2014.05.008
  11. Hansen MM, Bach Holm D, Kessel L. Associations between visual function and ultrastructure of the macula and optic disc after childhood cataract surgery. Acta Ophthalmol. 2021;100(6):640–647. doi: 10.1111/aos.15065
  12. Bansal P, Ram J, Sukhija J, et al. Retinal Nerve Fiber Layer and Macular Thickness Measurements in Children After Cataract Surgery Compared With Age-Matched Controls. Am J Ophthalmol. 2016;166:126–132. doi: 10.1016/j.ajo.2016.03.041
  13. Kim YW, Kim SJ, Yu YS. Spectral-domain optical coherence tomography analysis in deprivational amblyopia: a pilot study with unilateral pediatric cataract patients. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2811–2819. doi: 10.1007/s00417-013-2494-1
  14. Sacchi M, Serafino M, Trivedi RH, et al. Spectral-domain optical coherence tomography measurements of central foveal thickness before and after cataract surgery in children. J Cataract Refract Surg. 2015;41(2):382–386. doi: 10.1016/j.jcrs.2014.05.047
  15. Mosin IM, Kudryavtseva EA, Neudakhina EA. Primenenie metodov vizualizatsii zadnego otrezka glaza dlya otsenki funktsional’nykh iskhodov u detei s artifakiei. Russian Pediatric Ophthalmology. 2008;124(4):17–18. (In Russ).
  16. Ryabtseva AA, Yugay MP, Andryukhina OM. Changes of the retina in the early postoperative period after cataract phacoemulsification in children. Tochka zreniya. Vostok–Zapad. 2017;4:84–86. (In Russ).
  17. Chen HS, Liu CH, Lu DW. Comparison of glaucoma diagnostic accuracy of macular ganglion cell complex thickness based on nonhighly myopic and highly myopic normative database. Taiwan J Ophthalmol. 2016;6(1):15–20. doi: 10.1016/j.tjo.2016.01.001
  18. Pérez-García D, Ibañez-Alperte J, Remón L, et al. Study of spectral-domain optical coherence tomography in children: normal values and influence of age, sex, and refractive status. Eur J Ophthalmol. 2016;26(2):135–141. doi: 10.5301/ejo.5000665
  19. Herrera L, Perez-Navarro I, Sanchez-Cano A, et al. Choroidal thickness and volume in a healthy pediatric population and its relationship with age, axial length, ametropia, and sex. Retina. 2015;35(12):2574–2583. doi: 10.1097/IAE.0000000000000636
  20. Barrio-Barrio J, Noval S, Galdós M, et al. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol. 2013;91(1):e56–e63. doi: 10.1111/j.1755-3768.2012.02562.x
  21. Katargina LA, Kruglova TB, Egiyan NS, et al. The Morphometric Status of the Macula in Children with Pseudophakia after Surgical Treatment of Congenital Cataracts. Russian Ophthalmological Journal. 2016;9(1):27–31. (In Russ). doi: 10.21516/2072-0076-2016-9-1-27-31
  22. Salehi MA, Nowroozi A, Gouravani M, et al. Associations of refractive errors and retinal changes measured by optical coherence tomography: A systematic review and meta-analysis. Surv Ophthalmol. 2022;67(2):591–607. doi: 10.1016/j.survophthal.2021.07.007
  23. Chen S, Wang B, Dong N, et al. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children. Invest Ophthalmol Vis Sci. 2014;55(11):7410–7416. doi: 10.1167/iovs.14-13894
  24. Read SA, Alonso-Caneiro D, Vincent SJ. Longitudinal changes in macular retinal layer thickness in pediatric populations: Myopic vs non-myopic eyes. PLoS One. 2017;12(6):e0180462. doi: 10.1371/journal.pone.0180462
  25. Markosyan GA, Tarutta EP, Ryabina MV. Retina thickness in the macular area in children with congenital and acquired high myopia according to optical coherence tomography. Russian Ophthalmological Journal. 2010;3(3):21–24. (In Russ).
  26. Wan J, Zhang Z, Tian Y. Examination of Macular Retina and Choroidal Thickness in High Myopic Amblyopia Using Spectral-Domain Optical Coherence Tomography. Front Med (Lausanne). 2022;9:808409. doi: 10.3389/fmed.2022.808409
  27. Jin P, Zou H, Zhu J, et al.Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by Swept-Source Optical Coherence Tomography. Am J Ophthalmol. 2016;168:164–176. doi: 10.1016/j.ajo.2016.05.008
  28. Matalia J, Anegondi NS, Veeboy L, Roy AS. Age and myopia associated optical coherence tomography of retina and choroid in pediatric eyes. Indian J Ophthalmol. 2018;66(1):77–82. doi: 10.4103/ijo.IJO_652_17
  29. El-Shazly AA, Farweez YA, ElSebaay ME, El-Zawahry WMA. Correlation between choroidal thickness and degree of myopia assessed with enhanced depth imaging optical coherence tomography. Eur J Ophthalmol. 2017;27(5):577–584. doi: 10.5301/ejo.5000936
  30. Muhiddin HS, Mayasari AR, Umar BT, et al. Choroidal Thickness in Correlation with Axial Length and Myopia Degree. Vision. 2022;6(1):16. doi: 10.3390/vision6010016
  31. Wang T, Li H, Zhang R, et al. Evaluation of retinal vascular density and related factors in youth myopia without maculopathy using OCTA. Sci Rep. 2021;11(1):15361. doi: 10.1038/s41598-021-94909-8
  32. Liu X, Lin Z, Wang F, et al. Choroidal thickness and choriocapillaris vascular density in myopic anisometropia. Eye Vis (Lond). 2021;8(1):48. doi: 10.1186/s40662-021-00269-9

Copyright (c) 2022 Galkina A.S., Katargina L.A., Kruglova T.B., Egiyan N.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies