Artificial Intelligence Implementation for Customer Engagement in Social Networks: an Overview of Russian and Foreign Experience
- 作者: Sokolov A.V.1,2, Shutkin A.S.2, Epifanova E.M.2, Popkova A.A.2, Beklaryan A.L.3, Barulina M.A.2
-
隶属关系:
- Innopolis University
- Perm State University
- HSE University
- 期: 编号 1 (68) (2025)
- 页面: 118-144
- 栏目: Computer science
- URL: https://journals.rcsi.science/1993-0550/article/view/326428
- DOI: https://doi.org/10.17072/1993-0550-2025-1-118-144
- EDN: https://elibrary.ru/pqgfhj
- ID: 326428
如何引用文章
全文:
详细
In modern realities, artificial intelligence plays a key role in marketing, in general, and certainly in engaging new users in social networks, in particular. Neural networks and other machine learning methods are widely used in various recommendation systems, but their application for attracting new customers is underdeveloped. As we know, upscaling of any business is directly related to increasing the number of new consumers, which determines the significance of studying the issue of neuromarketing. The purpose of this study is to conduct a comparative analysis of existing Russian and foreign services for the engagement of new clients and to identify effective methods used for these purposes.
作者简介
A. Sokolov
Innopolis University; Perm State University
编辑信件的主要联系方式.
Email: asokolov@interprogram.ru
Postgraduate student of the Innopolis University Autonomous Educational Institution; Assistant, Institute of Physics and Mathematics 1 Universitetskaya St., Innopolis, Russia, 420500; 15 Bukireva St., Perm, Russia, 614068
A. Shutkin
Perm State University
Email: ashutkin@mail.ru
2nd-year Master's student at the Department of Applied Mathematics and Computer Science 15 Bukireva St., Perm, Russia, 614068
E. Epifanova
Perm State University
Email: Kateryna.epifanowa@yandex.ru
5th-year student specializing in Translation and Translation Studies 15 Bukireva St., Perm, Russia, 614068
A. Popkova
Perm State University
Email: alina.k-r@mail.ru
5th-year student specializing in Translation and Translation Studies 15 Bukireva St., Perm, Russia, 614068
A. Beklaryan
HSE University
Email: abeklaryan@hse.ru
Candidate of Technical Sciences, Associate Professor, Faculty of Computer Science 20, Myasnitskaya St., Moscow, Russia, 101000
M. Barulina
Perm State University
Email: mab@psu.ru
Doctor of Physico-Mathematical Sciences, Associate Professor, Institute of Physics and Mathematics 15 Bukireva St., Perm, Russia, 614068
参考
- Number of worldwide social network users 2028 | Statista: [сайт]. URL: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/ (Accessed: 10 February 2025).
- A.V. Sokolov, I.A. Sychev, O.L. Sokolova, D.B. Volkova, I.P. Seletkov, D.L. Yashichev, L.N. Yasnitsky (2024), "Theoretical and practical aspects of building rec-ommendation models: typology, architecture and design directions", Vestnik of Perm University. Mathematics. Mechanics. Informatics, vol. 66, no. 3, pp. 64-77. URL: https://www.elibrary.ru/item.asp?edn=ajuxpc (Accessed: 10 February 2025).
- Soumaya Lamrhari, Hamid El Ghazi, Mourad Oubrich, Abdellatif El Faker (2022), "A social CRM analytic framework for improving customer retention, acquisition, and conversion", Technological Forecasting and Social Change, vol. 174, URL: https://www.sciencedirect.com/science/article/abs/pii/S0040162521007095 (Accessed: 10 February 2025).
- Yassine Himeur, Abdullah Alsalemi, Ayman Al-Kababji, Faycal Bensaali, Abbes Amira, Christos Sardianos, George Dimitrakopoulos, Iraklis Varlamis (2021), "A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects", Information Fusion, vol. 72, pp. 1-21. URL: https://www. sciencedi-rect.com/science/article/pii/S1566253521000178 (Accessed: 10 February 2025).
- Mian Muhammad Talha, Hikmat Ullah Khan, Saqib Iqbal, Mohammed Alghobiri, Tassawar Iqbal, Muhammad Fayyaz(2023), "Deep learning in news recommender sys-tems: A comprehensive survey, challenges and future trends", Neurocomputing, vol. 562, URL: https://www.sciencedirect.com/science/article/abs/pii/S092523122 3010044 (Accessed: 10 February 2025).
- Semrush URL: https://www.semrush.com/ (Accessed: 15 January 2025).
- Sprout Social URL: https://sproutsocial.com/ (Accessed: 15 January 2025).
- Brand Analytics URL: https://brandanalytics.ru/en_RU/ (Accessed: 13 January 2025).
- LiveDune URL: https://livedune.com/ru (Accessed: 21 January 2025).
- TrendHERO URL: https://trendhero.io/ru/blog/livedune-analogues/ (Accessed: 21 Jan-uary 2025).
- Metricool URL: https://metricool.com/ (Accessed: 14 January 2025).
- Loomly URL: https://www.loomly.com/ (Accessed: 14 January 2025).
- Hootsuite URL: https://www.hootsuite.com/ (Accessed: 15 January 2025).
- All Ears URL: https://en.allears.ai/ (Accessed: 13 January 2025).
- Outbrain URL: https://www.outbrain.com/ (Accessed: 13 January 2025).
- Buffer URL: https://buffer.com/ (Accessed: 13 January 2025).
- Simplified URL: https://simplified.com/ (Accessed: 13 January 2025).
- Ms. Anshu, Dr. M. Sharma (2024), "AI in SocialMedia Marketing: Opportunities and Challenges", International Journal of Scientific Research in Computer Science, Engi-neering and Information Technology, vol. 10, issue 5. pp. 195-204.
- Sah, V., Akki, S., Shastry, H. (2024), "Artificial intelligence in social media marketing", AIP Conf. Proc., 20 December 2024; 3217 (1): 020015.
- Sheverdin, А. А. (2024), "AUTOMATION OF MARKETING PROCESSES USING ARTIFICIAL INTELLIGENCE: ADVANTAGES AND CHALLENGES", Bulletin of Science, № 1(70). URL: https://cyberleninka.ru/article/n/avtomatizatsiya-marketingovyh-protsessov-s-pomoschyu-iskusstvennogo-intellekta-preimuschestva-i-vyzovy (Accessed: 17 January 2025).
- Islam, M. A., Fakir, S. I., Masud, S. B., Hossen, M. D., Islam, M. T., Siddiky, M. R. (2024), "Artificial intelligence in digital marketing automation: Enhancing personaliza-tion, predictive analytics, and ethical integration", Edelweiss Applied Science and Tech-nology, 8(6), pp. 6498–6516.
- Senyapar, D. (2024), "Artificial Intelligence in Marketing Communication: A Compre-hensive Exploration of the Integration and Impact of AI", Technium Social Sciences Journal, 55(1), pp. 64–81.
- Odejide, O.A., Edunjobi, T.E. (2024), "AI IN PROJECT MANAGEMENT: EXPLOR-ING THEORETICAL MODELS FOR DECISION-MAKING AND RISK MANAGEMENT", Engineering Science & Technology Journal, vol. 5, issue 3. pp. 1072-1085.
- Babatunde, S., Odejide, O., Edunjobi, T., Ogundipe, D. (2024), "THE ROLE OF AI IN MARKETING PERSONALIZATION: A THEORETICAL EXPLORATION OF CONSUMER ENGAGEMENT STRATEGIES", International Journal of Management & Entrepreneurship Research, vol. 6. pp. 936-949.
- Ghosh, S., Ness, S., Salunkhe, Sh. (2024), "The Role of AI Enabled Chatbots in Omni-channel Customer Service", Journal of Engineering Research and Reports, vol.26. pp. 327-345.
- Rani, Y.A., Balaram, A., Sirisha, M.R., Nabi, S.A., Renuka, P., Kiran, A. (2024), "AI Enhanced Customer Service Chatbot", International Conference on Science Technology Engineering and Management (ICSTEM), pp. 1-5.
- Ojha A.K. (2023), "Navigating the Algorithmic Marketplace: How AI is Changing Con-sumer Psychology and Brand Loyalty", Journal of Psychology and Political Science, vol. 3. pp. 25-29.
- Schönberger, M. (2023), "Artificial intelligence for small and medium-sized enterprises: Identifying key applications and challenges", Journal of Business Management, vol. 21, pp. 89-112.
- Abhulimen, A.O., Ejike, O.G. (2024), "Ethical considerations in AI use for SMEs and supply chains: Current challenges and future directions", International Journal of Ap-plied Research in Social Sciences, vol.6, pp. 1653-1679.
- Shan, L. (2024), "Computing advertising intelligent computing and push based on arti-ficial intelligence in the big data era", Heliyon, 10(17), p.e37252. doi:https:// doi.org/10.1016/j.heliyon.2024.e37252.
- Azuka, P., Ajiga, N.D., Olaoluwa, S. and Ezeigweneme, N.C. (2024), "Predictive Ana-lytics for Market Trends Using AI: a Study in Consumer Behavior", International Jour-nal of Engineering Research Updates, [online] 7(1), pp.036–049. doi:https:// doi.org/10.53430/ijeru.2024.7.1.0032.
- Priyanga, G. (2023), "The effects of artificial intelligence on digital marketing", Sho-dhKosh Journal of Visual and Performing Arts, 4(1SE). doi:https://doi.org/ 10.29121/shodhkosh.v4.i1se.2023.431.
- Rane, N., Mallikarjuna Paramesha, Choudhary, S. and Rane, J. (2024), "Artificial Intel-ligence, Machine Learning, and Deep Learning for Advanced Business Strategies: a Review", Social Science Research Network. [online] doi:https://doi.org/ 10.2139/ssrn.4835661.
- Yixuan, Z. (2024), "Utilizing machine learning algorithms for consumer behaviour analysis", Applied and computational engineering, 49(1), pp.213–219. doi:https:// doi.org/10.54254/2755-2721/49/20241186.
- Krajčovič, P. (2024), "The Impact of Artificial Intelligence on Social Media", European Conference on Social Media, [online] 11(1), pp.103–110. doi:https:// doi.org/10.34190/ecsm.11.1.2237.
- Sharma, S., Chaitanya, K., Jawad, A.B., Premkumar, I., Mehta, J.V., Hajoary, D. (2023), "Ethical Considerations in AI-Based Marketing: Balancing Profit and Consumer Trust. Tuijin Jishu", Journal of Propulsion Technology, 44(3), pp.1301–1309. doi:https://doi.org/10.52783/tjjpt.v44.i3.474.
- Pietra Daneluzzi Quinelato (2024), "Consumer manipulation through behavioral adver-tising", 2(1), pp.1–24. doi:https://doi.org/10.59224/bjlti.v2i1.1-24.
- Ienca, M. (2023), "On Artificial Intelligence and Manipulation", On Artificial Intelli-gence and Manipulation, 42. doi:https://doi.org/10.1007/s11245-023-09940-3.
- Dr Paul Atkinson and Dr Richie Barker (2023), "AI and the social construction of crea-tivity", Convergence: The International Journal of Research into New Media Technolo-gies, 29(4). doi:https://doi.org/10.1177/13548565231187730.
- Eapen, T., Finkenstadt, D.J., Folk, J. and Lokesh Venkataswamy (2024), "How Genera-tive AI Can Augment Human Creativity", SSRN Electronic Journal. doi:https:// doi.org/10.2139/ssrn.4759930.
- Forouzandeh, A., Feizi-Derakhshi, M.-R., Gholami-Dastgerdi, P. (2022), "Persian Named Entity Recognition by Gray Woelf Optimization Algorithm", Scientific Pro-gramming, pp. 12. URL: https://onlinelibrary.wiley.com/doi/10.1155/2022/6368709 (Accessed: 10 February 2025).
- F. K. Sufi and I. Khalil (2024), "Automated Disaster Monitoring From Social Media Posts Using AI-Based Location Intelligence and Sentiment Analysis", IEEE Transac-tions on Computational Social Systems, vol. 11, no. 4, pp. 4614-4624. URL: https://ieeexplore.ieee.org/document/9737676/ (Accessed: 10 February 2025).
- Zhao, Y. (2022), "Exploring Redditors’ Topics with Natural Language Processing", Polytechnic University of Valencia Congress, CARMA, no. 4, pp 32. URL: http://ocs.editorial.upv.es/index.php/CARMA/CARMA2022/paper/view/15022 (Ac-cessed: 10 February 2025).
- Molenaar, A, Lukose, D, Brennan, L, Jenkins, EL, McCaffrey, TA, (2024), "Using Nat-ural Language Processing to Explore Social Media Opinions on Food Security: Senti-ment Analysis and Topic Modeling Study", J Med Internet Res, pp. 26. URL: https://www.jmir.org/2024/1/e47826 (Accessed: 10 February 2025).
- Itoo, R. A., Shaikh, Y., Tanwani, S., (2024), "Classifying Opinions and Sentiments on Social Networking Sites using Machine Learning Classifiers", Ijraset, pp. 13. URL: https://www.ijraset.com/best-journal/classifying-opinions-and-sentiments-on-social-networking-sites-using-machine-learning-classifiers (Accessed: 10 February 2025).
- Khan, L., Amjad, A., Afaq, K. M., Chang, H.-T., (2022), "Deep Sentiment Analysis Us-ing CNN-LSTM Architecture of English and Roman Urdu Text Shared in Social Me-dia", Applied Sciences, no. 5, pp. 12. URL: https://www.mdpi.com/2076-3417/ 12/5/2694 (Accessed: 10 February 2025).
- Alhassun, A. S., Rassam, M. A., A (2022), "Combined Text-Based and Metadata-Based Deep-Learning Framework for the Detection of Spam Accounts on the Social Media Platform Twitter", Processes, vol. 10(3), pp. 439. URL: https://www. mdpi.com/2227-9717/10/3/439 (Accessed: 10 February 2025).
- Kaddoura, S., Chandrasekaran, G., Elena Popescu, D., Duraisamy, J. H. (2022), "A sys-tematic literature review on spam content detection and classification", PeerJ Computer Science, 8:e830, URL: https://peerj.com/articles/cs-830/ (Accessed: 10 February 2025).
- Zhang, J., Yang, J., Yu, J., Fan, J. (2022), "Semisupervised image classification by mu-tual learning of multiple self-supervised models", Int J Intell Syst, vol. 37, pp. 3117-3141. URL: https://onlinelibrary.wiley.com/doi/10.1002/int.22814 (Accessed: 10 February 2025).
- Joo, J. and Steinert-Threlkeld, Z. C. (2022), "Image as Data: Automated Content Analy-sis for Visual Presentations of Political Actors and Events", Computational Communi-cation Research, URL: https://www.aup-online.com/content/ jour-nals/10.5117/CCR2022.1.001.JOO (Accessed: 10 February 2025).
- NAZNIN, F., KAKOTI MAHANTA, A.(2023), "Grouping of Twitter users according to contents of their tweets", Indonesian Journal of Electrical Engineering and Computer Science, vol. 31, no. 2, pp. 876-884. ISSN 2502-4760. URL: https://ijeecs.aescore.com/index.php/IJEECS/article/view/30731 (Accessed: 10 February 2025).
- Sharma, A., & Shafiq, M. O. (2022), "A Comprehensive Artificial Intelligence Based User Intention Assessment Model from Online Reviews and Social Media", Applied Ar-tificial Intelligence, vol. 36(1). URL: https://www.tandfonline. com/doi/citedby/ 10.1080/08839514.2021.2014193 (Accessed: 10 February 2025).
- Orama, J. A., Huertas, A., Borràs, J., Moreno, A., & Anton Clavé, S. (2022), "Identifi-cation of Mobility Patterns of Clusters of City Visitors: An Application of Artificial Intelligence Techniques to Social Media Data", Applied Sciences, vol. 12(12), p. 5834. URL: https://www.mdpi.com/2076-3417/12/12/5834 (Accessed: 10 February 2025).
- C, R., & Kodabagi, M. M. (2022), "CONNECTING USER PROFILES OF SOCIAL NETWORKS USING PROXIMITY-BASED CLUSTERING", Malaysian Journal of Computer Science, pp. 1–15. URL: https://ejournal.um.edu.my/index.php/MJCS /article/view/40401 (Accessed: 10 February 2025).
- Escobedo, F., Garay Canales, H. B., Aguirre Reyes, E. M., Lamadrid Vela, C. A., Mon-toya Perez, O. N., Caballero Jimenez, G. E. (2024), "Deep Attentional Implanted Graph Clustering Algorithm for the Visualization and Analysis of Social Networks", Journal of Internet Services and Information Security, vol. 14, no. 1, pp. 153-164. URL: https://jisis.org/article/2024.I1.010/71006/ (Accessed: 10 February 2025).
- Chebil, M., Jallouli, R., & Bach Tobji, M. A. (2024), "Clustering Social Media Data for Marketing Strategies: Literature Review Using Topic Modelling Techniques", Journal of Telecommunications and the Digital Economy, vol. 12(1), pp. 510–537. URL: https://jtde.telsoc.org/index.php/jtde/article/view/889 (Accessed: 10 February 2025).
- Li, S.-C., Chen, Y.-C., Chen, Y.-W., Huang, Y. (2022), "Predicting Advertisement Rev-enue of Social-Media-Driven Content Websites: Toward More Efficient and Sustainable Social Media Posting", Sustainability, vol. 14(7), p. 4225. URL: https://www.mdpi.com/2071-1050/14/7/4225 (Accessed: 10 February 2025).
- J. R. Sánchez et al. (2022), "On the Power of Social Networks to Analyze Threatening Trends", in IEEE Internet Computing, 2022, 1 March-April, vol. 26, no. 2, pp. 19-26, URL: https://ieeexplore.ieee.org/document/9721598 (Accessed: 10 February 2025).
- Xu, Z., Qian, M. (2023), "Predicting Popularity of Viral Content in Social Media through a Temporal-Spatial Cascade Convolutional Learning Framework", Mathematics, vol. 11(14), pp.3059. URL: https://www.mdpi.com/2227-7390/11/14/3059 (Accessed: 10 February 2025).
- Gao, B., Wang, Y., Xie, H., Hu, Y., & Hu, Y. (2023), "Artificial Intelligence in Adver-tising: Advancements, Challenges, and Ethical Considerations in Targeting, Personali-zation, Content Creation, and Ad Optimization", Sage Open, vol. 13(4). URL: https://journals.sagepub.com/doi/10.1177/21582440231210759 (Accessed: 10 February 2025).
- Adam, A. & Setiawan, E. (2023), "Social Media Sentiment Analysis using Convolu-tional Neural Network (CNN) dan Gated Recurrent Unit (GRU) ", Journal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, pp. 119-131. URL: https://www.researchgate.net/publication/370262265_Social_Media_Sentiment_Analysis_using_Convolutional_Neural_Network_CNN_dan_Gated_Recurrent_Unit_ GRU (Accessed: 10 February 2025).
- Zhe, C., & Srijinda, P. (2024), "The impact of AI-generated content on content con-sumption habits of Chinese social media users through Xiaohongshu application", Edelweiss Applied Science and Technology, vol. 8(6), pp. 1504–1516. URL: https://learning-gate.com/index.php/2576-8484/article/view/2268 (Accessed: 10 Febru-ary 2025).
- Bender, S. M. (2023), "Coexistence and creativity: screen media education in the age of artificial intelligence content generators", Media Practice and Education, vol. 24(4), pp. 351–366. URL: olhttps://www.tandfonline.com/doi/citedby/10.1080 /25741136. 2025.2204203?scroll=top&needAccess=true (Accessed: 10 February 2025).
- Leung, R. (2023), "Using AI–ML to Augment the Capabilities of Social Media for Telehealth and Remote Patient Monitoring", Healthcare, vol. 11(12), pp. 1704. URL: https://www.mdpi.com/2227-9032/11/12/1704 (Accessed: 10 February 2025).
- Krishna, R., Lee, D., Fei-Fei, L., & Bernstein, M.S. (2022), "Socially situated artificial intelligence enables learning from human interaction", Proc. Natl. Acad. Sci. U.S.A. 119 (39) e2115730119, URL: https://www.pnas.org/doi/full/10.1073/ pnas.2115730119 (Accessed: 10 February 2025).
- Pandey, K. K., Thorat, M., Joshi, A., D, S., Hussein, A. and Alazzam, M. B. (2023), "Natural Language Processing for Sentiment Analysis in Social Media Marketing," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, pp. 326-330. URL: https://ieeexplore.ieee.org/document/10182590 (Accessed: 10 February 2025).
- Reddy, r.D.V.K., Likhitha, N., Navya Sri, M. (2024), "Enhancing Social Media Market-ing with Machine Learning Based Ads Classification", IJSREM, p. 9. URL: https://ijsrem.com/download/enhancing-social-media-marketing-with-machine-learning-based-ads-classification/ (Accessed: 10 February 2025).
- Ebrahimi, P., Basirat, M., Yousefi, A., Nekmahmud, M., Gholampour, A., Fekete-Farkas, M. (2022), "Social Networks Marketing and Consumer Purchase Behavior: The Combination of SEM and Unsupervised Machine Learning Approaches", Big Data and Cognitive Computing, vol. 6(2), p. 35. URL: https://www.mdpi.com/2504-2289/6/2/35 (Accessed: 10 February 2025).
- Jokandan, S. M. E., Bayat, P., Farrokhbakht Foumani, M. (2022), "Targeted Advertising in Social Media Platforms Using Hybrid Convolutional Learning Method besides Effi-cient Feature Weights", Journal of Electrical and Computer Engineering, p. 17. URL: https://onlinelibrary.wiley.com/doi/10.1155/2022/6159650 (Accessed: 10 February 2025).
- Kshetri, N., Dwivedi, Y. K., Davenport, T. H., Panteli, N. (2024), "Generative artificial intelligence in marketing: Applications, opportunities, challenges, and research agenda", International Journal of Information Management, vol. 75. URL: https://www.sciencedirect.com/science/article/pii/S026840122300097X (Accessed: 10 February 2025).
- Murphy, L., Perales, F., Gopal, A., Gyurdieva, Y., Gueorguiev, V. and Shandilya, P. (2022), "Time for marketing to embrace reinforcement learning", Journal of Digital & Social Media Marketing, vol. 10, no. 2. URL: https://hstalks.com/article/7309/ time-for-marketing-to-embrace-reinforcement-learni/?business (Accessed: 10 February 2025).
- Shitko A.M. (2017), "Designing microservice architecture of software", Proceedings of BSTU. Series 3: Physical and Mathematical Sciences and Informatics, no. 9(200), pp. 122-125. URL: https://cyberleninka.ru/article/n/proektirovanie-mikroser-visnoy-arhitektury-programmnogo-obespecheniya (Accessed: 10 February 2025).
补充文件
