On nonlocal problem with fractional Riemann-Liouville derivatives for a mixed-type equation


Cite item

Full Text

Abstract

The unique solvability is investigated for the problem of equation with partial fractional derivative of Riemann-Liouville and boundary condition that contains the generalized operator of fractional integro-differentiation. The uniqueness theorem for the solution of the problem is proved on the basis of the principle of optimality for a nonlocal parabolic equation and the principle of extremum for the operators of fractional differentiation in the sense of Riemann-Liouville. The proof of the existence of solutions is equivalent to the problem of solvability of differential equations of fractional order. The solution is obtained in explicit form.

About the authors

Anna V Tarasenko

Samara State Technical University

Email: tarasenko.a.v@mail.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Higher Mathematics of the Architectural Engineering Institute 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

Irina P Egorova

Samara State Technical University

Email: ira.egorova81@yandex.ru
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Higher Mathematics of the Architectural Engineering Institute 244, Molodogvardeyskaya st., Samara, 443100, Russian Federation

References

  1. Самко С. Г., Килбас А. А., Маричев О. И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
  2. Saigo M. A remark on integral operators involving the Gauss hypergeometric function // Math. Rep. Coll. Gen. Educ., Kyushu Univ., 1978. vol. 11, no. 2. pp. 135-143.
  3. Килбас А. А., Репин О. А. Аналог задачи Бицадзе-Самарского для уравнения смешанного типа с дробной производной // Дифференц. уравнения, 2003. Т. 39, № 5. С. 638-644.
  4. Геккиева С. Х. Аналог задачи Трикоми для уравнения смешанного типа с дробной производной // Известия КБНЦ РАН, 2001. № 2(7). С. 78-80.
  5. Килбас А. А., Репин О. А. Аналог задачи Трикоми для дифференциального уравнения с частными производными, содержащего уравнение диффузии дробного порядка // Докл. АМАН, 2010. Т. 12, № 1. С. 31-39.
  6. Псху А. В. Уравнения в частных производных дробного порядка. М.: Наука, 2005. 199 с.
  7. Смирнов М. М. Вырождающиеся эллиптические и гиперболические уравнения. М.: Наука, 1966. 292 с.
  8. Нахушев А. М. Дробное исчисление его применение. М.: Физматлит, 2009. 272 с.
  9. Нахушева В. А. Дифференциальные уравнения математических моделей нелокальных процессов. М.: Наука, 2006. 173 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».