The vortex filament dynamics: New viewpoint on the problems of energy and effective mass


Cite item

Full Text

Abstract

The paper is devoted to the dynamics of a zero thickness infinite vortex filament in the local induction approximation. The filament is asymptotically considered as a straight line defined by the certain vector ${\boldsymbol{b}}_3 \in E_3$.
We also investigate the possibility of interpretation of such object as a planar “quaziparticle”. The configuration space for some “collective coordinates” for such object is the plane $E_2 \perp {\boldsymbol{b}}_3$.
The “quaziparticle” has a certain number of the internal degrees of the freedom. The Hamiltonian description of the filament is constructed in terms of the variables allowing the natural classification into “external” and “internal” groups.
The external variables (coordinates and momenta of a planar structureless particle) and the internal ones (the variables for the continuous Heisenberg spin chain) are entangled by the constraints. Because of these constraints, the constructed theory is non-trivial. The space symmetry group of the system was constructed by two stages: the contraction $ SO(3) \to E(2)$ and the subsequent extension $E(2) \times T \to \tilde{\mathcal G}_2$. The group $E(2)$ is the group of the plane motion for the plane $E_2 \perp {\boldsymbol{b}}_3$, symbol $T$ denotes the group of time translations and the group $\tilde{\mathcal G}_2$ is the central extended Galilei group for the plane mentioned above.
The appearance of the Galilei group makes it possible to introduce the invariant Cazimir functions for the Lee algebras for this group and to formulate the new approach for the problem of the energy of the infinite vortex filament with zero thickness. The formula for the tensor of the inverse effective mass of the constructed system is also being deduced. It is demonstrated that the suggested theory can be interpreted as a model of the planar vortex particle having an infinite number of internal degrees of freedom.

About the authors

Sergei Vladimirovich Talalov

Togliatti State University

Email: svt_19@mail.ru
Doctor of physico-mathematical sciences, Associate professor

References

  1. Saffman P. G., Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics., Cambrige Univ. Press, Cambrige, 1992, xi+311 pp.
  2. Kitaev A. Yu., "Fault-tolerant quantum computation by anyons", Annals Phys., 303:1 (2003), 2–30
  3. Field B., Simula T., "Introduction to topological quantum computation with non-Abelian anyons", Quantum Science and Technology, 3:4 (2018), UNSP 045004
  4. Batchelor G. K., An introduction to fluid dynamics, Cambridge Mathematical Library, Cambrige Univ. Press, Cambrige, 1999, xviii+615 pp
  5. Тахтаджян Л.А., Фаддеев Л. Д., Гамильтонов подход в теории солитонов, Наука, М., 1986, 527 с.
  6. Hirono Y., Kharzeev D. E, Sadofyev A. V., "Dynamics of vortices in chiral media: The chiral propulsion effect", Phys. Rev. Lett., 121:14 (2018), 142301
  7. Рубан В. П., "Динамика прямых вихревых нитей в бозе-конденсате с гауссовым профилем плотности", ЖЭТФ, 151:6 (2017), 1092-1103
  8. Abhinav K., Guha P., "Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems", Eur. Phys. J. B, 91:3 (2018), 52
  9. Hasimoto H., "A soliton on a vortex filament", J. Fluid Mech., 51:3 (1972), 477-485
  10. Molitor M., "Generalization of Hasimoto's transformation", Int. J. Geom. Methods Mod. Phys., 6:4 (2009), 625–630
  11. Van Gorder R. A., "Quantum Hasimoto transformation and nonlinear waves on a superfluid vortex filament under the quantum local induction approximation", Phys. Rev. E, 91:5 (2015), 053201, 33 pp.
  12. Виленкин Н. Я., Специальные функции и теория представлений групп, Наука, М., 1965, 588 с.
  13. Фущич В. И., Никитин А. Г., Симметрия уравнений квантовой механики, Наука, М., 1990, 404 с.
  14. Рубан В. П., "Гамильтоновы уравнения движения вихревой нити во вращающемся бозе-конденсате и их "солитонные" решения", Письма в ЖЭТФ, 103:12 (2016), 878-882
  15. Dirac P. A. M., "Generalized hamiltonian dynamics", Canad. J. Math., 2 (1950), 129-148
  16. Talalov S. V., "About the non-standard viewpoint on the dynamics of closed vortex filament", Mod. Phys. Letters B, 32 (2018), 1850410, 7 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).