О динамике вихревой нити. Новый взгляд на проблему энергии и эффективной массы


Цитировать

Полный текст

Аннотация

Рассматривается динамика бесконечной вихревой нити «нулевой толщины» в приближении локальной индукции. Асимптотически нить считается прямолинейной, причем предполагается существование в окружающем пространстве $E_3$ выделенного направления, задаваемого некоторым вектором ${\boldsymbol{b}}_3$, который и определяет асимптотики нити.
Исследуется возможность интерпретации такого объекта как модели планарной «квазичастицы»с конфигурационным пространством (коллективных координат) в виде плоскости $E_2 \perp {\boldsymbol{b}}_3$ и внутренними степенями свободы.
Построено гамильтоново описание динамики такой нити в терминах переменных, допускающих естественное разделение на две группы: «внешние» и «внутренние».
Внешние гамильтоновы переменные (имеющие смысл координат и импульсов бесструктурной планарной частицы) и внутренние (соответствующие переменным модели магнетика Гейзенберга) перепутаны связями, что приводит к нетривиальности конструкции. Группа пространственной симметрии системы строится в два этапа: сжатие $ SO(3) \to E(2)$ и последующее расширение $E(2) \times T \to \tilde{\mathcal G}_2$. Здесь $E(2)$ — группа движений плоскости $E_2 \perp {\boldsymbol{b}}_3$, $T$ — группа временн\'{ы}х сдвигов и $\tilde{\mathcal G}_2$ — центрально расширенная группа Галилея, действующая на указанной плоскости.
Введение в модель группы Галилея позволяет ввести в рассмотрение инвариантные функции Казимира алгебры Ли данной группы и, как следствие, сформулировать новый подход к проблеме энергии бесконечной вихревой нити нулевой толщины. Получено также выражение для тензора обратной эффективной массы построенной динамической системы. Показано, что предложенную теорию можно рассматривать как математическую модель планарной вихревой частицы, обладающей бесконечным числом внутренних степеней свободы.

Об авторах

Сергей Владимирович Талалов

Тольяттинский государственный университет

Email: svt_19@mail.ru
доктор физико-математических наук, доцент

Список литературы

  1. Saffman P. G., Vortex dynamics, Cambridge Monographs on Mechanics and Applied Mathematics., Cambrige Univ. Press, Cambrige, 1992, xi+311 pp.
  2. Kitaev A. Yu., "Fault-tolerant quantum computation by anyons", Annals Phys., 303:1 (2003), 2–30
  3. Field B., Simula T., "Introduction to topological quantum computation with non-Abelian anyons", Quantum Science and Technology, 3:4 (2018), UNSP 045004
  4. Batchelor G. K., An introduction to fluid dynamics, Cambridge Mathematical Library, Cambrige Univ. Press, Cambrige, 1999, xviii+615 pp
  5. Тахтаджян Л.А., Фаддеев Л. Д., Гамильтонов подход в теории солитонов, Наука, М., 1986, 527 с.
  6. Hirono Y., Kharzeev D. E, Sadofyev A. V., "Dynamics of vortices in chiral media: The chiral propulsion effect", Phys. Rev. Lett., 121:14 (2018), 142301
  7. Рубан В. П., "Динамика прямых вихревых нитей в бозе-конденсате с гауссовым профилем плотности", ЖЭТФ, 151:6 (2017), 1092-1103
  8. Abhinav K., Guha P., "Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems", Eur. Phys. J. B, 91:3 (2018), 52
  9. Hasimoto H., "A soliton on a vortex filament", J. Fluid Mech., 51:3 (1972), 477-485
  10. Molitor M., "Generalization of Hasimoto's transformation", Int. J. Geom. Methods Mod. Phys., 6:4 (2009), 625–630
  11. Van Gorder R. A., "Quantum Hasimoto transformation and nonlinear waves on a superfluid vortex filament under the quantum local induction approximation", Phys. Rev. E, 91:5 (2015), 053201, 33 pp.
  12. Виленкин Н. Я., Специальные функции и теория представлений групп, Наука, М., 1965, 588 с.
  13. Фущич В. И., Никитин А. Г., Симметрия уравнений квантовой механики, Наука, М., 1990, 404 с.
  14. Рубан В. П., "Гамильтоновы уравнения движения вихревой нити во вращающемся бозе-конденсате и их "солитонные" решения", Письма в ЖЭТФ, 103:12 (2016), 878-882
  15. Dirac P. A. M., "Generalized hamiltonian dynamics", Canad. J. Math., 2 (1950), 129-148
  16. Talalov S. V., "About the non-standard viewpoint on the dynamics of closed vortex filament", Mod. Phys. Letters B, 32 (2018), 1850410, 7 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».